
© L. Skrabanek, Weill Cornell Medical College, 2004-2014 1

Introduction to

UNIX

Written by: Luce Skrabanek, ICB, WMC 2004

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 2

Reasons for biologists to learn Unix

As biological data sets grow in size, problems become more complex and require more

computer power. Computers that can provide this power use Unix.

Brief history

Unix was originally developed at Bell Laboratories as a private research project by a

small group of people starting in 1969. Their aims were to design an operating system

(OS) which was simple and elegant, written in a high-level language (rather than

assembly), and allowed the re-use of code. Unix has a small amount of assembly-level

code (the kernel), and the rest is written in C. This means that users could write

applications in C, and easily make use of all the OS facilities.

The advantages of Unix are its portability and its popularity.

Unix is popular because it is relatively easy to get Unix on a system (because so little of it

is written in low-level language), the application program interface allows many different

programs to be easily implementable across different platforms, and it is easy to network

multiple systems.

Unix runs on many different systems, so skills learned on one computer can be used with

almost any other system. Unix is an inexpensive and flexible computing system.

Unix is now produced by a number of companies for a number of different platforms.

This means that Unix is not a single operating system, but a number of OS which differ

from each other in small ways. Most commands are common to all systems.

The main task of an OS is to manage all the computer operations and provide a link

between the user and the system resources, The Unix OS runs applications, provides

access to system resources including hard drives, CD-ROMs, etc, allows multiple users to

log on simultaneously, and provides security for the computer and the data stored on it.

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 3

Unix functionality is made up of many programs that can be individually modified by

anyone with programming experience.

There are three components of the OS:

• The kernel, which is the core of the OS. It manages devices, memory, processes

and background processes. It transmits information between the system programs

and the system hardware. It schedules and executes all commands issued, and

manages functions such as swap space and background processes.

• The shell, which is the interface between the kernel and the user. It acts as an

interpreter or translator of commands. The shell accepts commands issued by the

user, interprets what the user typed, and then sends this information to the kernel

for execution.

• The file system, which is a hierarchy of directories, subdirectories and files.

Different shells, which are basically historical remnants from different development

groups, have different sets of commands, and different syntax.

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 4

Conventions used in this manual

User-entered commands are written in bold Courier font. Normal Courier

font is used for all text which comes up on the screen which has not been user-entered.

Anything within ‘<’ and ‘>’ indicates my comment or instruction.

Any comment which is specific to the computers used by the ICB are highlighted by this

symbol ✪.

A quick note on terminology

Standard input: what the user types in from the keyboard.

Standard output: the text that results from the process of a command and is outputted to

the terminal screen.

The basics

Logging on: The first thing you need is a Unix account on the server that you will be

accessing. Each account is protected by a unique username, and a password. When you

try to access the system, you will be prompted for your username (or login). Unix

usernames are always lowercase. Enter your username, then hit ‘Enter’. You will then be

prompted for your password. When you type in your password, it will not show up on the

screen. Passwords are case-sensitive, so make sure you type in your password exactly as

it was given to you. Hit ‘Enter’.

Once you have logged on, you will see your cursor beside some text at the right-hand

side of your screen. This text is your system prompt, which is where you enter commands

which will be interpreted by the shell. The system prompt may include information such

as the machine that you are logged on to, your current directory, the current time, or the

number of commands that you have entered in this particular session.

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 5

✪ The Unix accounts that you have been given use the bash shell. After typing in a

command after the prompt, hit ‘Enter’, so that the shell knows that it should now process

that command.

The first time you log in, it is advisable to change your password. You can do this by

typing passwd after the prompt, and hitting ‘Enter.’ passwd is a command which tells

the system to run the password changing program.

✪ The ICB uses an LDAP system to change passwords. This changes your password on

all ICB computers at once.

prompt> passwd

changing password for <username>

Old password: <type in the password that you used to access

this account>

New password: <type in your new password, which ideally

should be something that you will remember>

Retype new password: <re-enter your new password>

None of the passwords you type in will displayed, for obvious security reasons.

To correct mistyped commands, use the delete or backspace key (this will differ on

different machines, depending on how the Unix program has been set up). Some

computers require you to enter Control-H (i.e., pressing the Control key and the ‘H’ key

at the same time).

To exit a Unix session, use the logout command, i.e., type logout after the prompt.

You can also logout by typing Control-D, or exit. Wait for the message confirming that

you have logged out before ending the program that gives you access to the Unix system.

Sometimes you will get the message There are stopped jobs. In this case, just

use any of the above logout commands again.

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 6

Unix filesystems, and moving around in them

The Unix filesystem is very similar to the PC or Mac filesystems that you may be

familiar with. It is a hierarchical structure. This means that there is one main directory,

which contains files (such as executables, or programs), and other directories (termed

sub-directories), which in turn can include other directories, and so on. Directories are

equivalent to folders on a PC or Mac and are a means of organizing your files. The main

directory, similar to your PC/Mac hard disk folder, is called the root directory, and is

represented by ‘/’. There are several system directories contained in the root directory,

such as /bin, /etc, /dev, /lib, /usr, /home.

Any directory or file in the system can be referred to by an absolute pathname, which

begins with the root directory, and then lists each of the subsequent directories in the

hierarchical tree structure which you have to go through to get to the file or directory you

want, each separated by a ‘/’, and then finally the filename (or directory) that you want

to go to. For example, /hosts/fulcrum/homes/user refers to the home directory

of a user called ‘user’. This directory is contained in a directory called homes, which in

turn is contained in a directory called fulcrum, which is contained in a directory called

hosts, which is found in the main root directory.

The user’s home directory is the one to which the user will automatically be directed to

once they log on to the system. If you are currently within your home directory, you can

find the absolute pathname of your home directory using the command pwd (which

stands for ‘print working directory’, and shows the absolute pathname of your current

directory).

To move around the Unix filesystem, you can use the command cd (‘change directory’).

This command is the first command that we have come across which can take an

argument. An argument to a command is something you put after the command itself,

which will either modify its behaviour in some way, or may be the name of a file which

the command must execute some process on. If you just type cd on its own, without any

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 7

argument, you are brought to your home directory. cd .. (where ‘..’ is an argument)

brings you to the directory which contains the directory you are currently in, which is

referred to as the ‘parent’ directory. If you are in your home directory, cd bin (for

example) will bring you to the directory called bin in your home directory. However, cd

/bin will bring you to the bin dorectory in the root directory. The current directory is

referred to in pathnames by a ‘.’ (a period). Files and directories may be referred to both

by their absolute pathnames (starting from the root directory), or by their relative

pathname, which is the pathname relative to your current directory. The relative

pathname can include ‘..’ to designate a directory one step higher up in the hierarchy.

The relative pathname can also include ‘~’ to indicate the user’s home directory.

Naming files

Unix is case-sensitive, so MyFile.txt is a different file to myfile.txt or

MyFiLe.txt. Characters used in filenames should only be alphanumeric characters,

underscores, dashes and periods. There cannot be more than one file with the same name.

Any new file created with the same name as an old one will overwrite the old one.

By convention, most filenames start with a lowercase letter, and end with a period

followed by an extension. The extension, usually two or three letters, signifies the type of

file it is (cf PC extensions), e.g. .txt would be a text file, .fasta a file containing

sequence(s) in FASTA format, .html a HTML document. This convention is often not

followed, but it is good practice to do so.

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 8

Command line syntax

Unix commands usually have flags and arguments associated with them, which may be

optional. Flags modify the behaviour of the command, and are usually single-letter

abbreviations which are used with a dash in front of them. Some flags also take

arguments. An argument to a command is typically a filename. Arguments to flags tend

to be pre-defined words (or numbers) which indicate exactly how the behaviour of that

command will be affected.

The names of some Unix commands may appear obscure and arcane at first, but most of

them do contain within them some description of what they do.

The syntax for Unix commands has a conventional format. Optional flags and arguments

are surrounded by square brackets. Below the name of each command given below, the

formal syntax of that command is also indicated. All options are usually not given. To see

all options for a command, use the man command (see below).

Some of the more commonly used commands are:

General commands:

passwd (PASSWorD)

passwd
Allows the user to change their password. No flags or arguments are used by the normal

user.

pwd (Print Working Directory)

pwd

We have already come across this command, which prints the name of the working

directory on the screen. This command takes no flags or arguments at all.

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 9

cd (Change Directory)

cd [directory]

Changes the directory which we are currently in. This command does not have any flags

associated with it, and the argument to the command (i.e. the directory name) is optional.

If we do not give this command an argument, we are taken by default to the home

directory. Possible arguments to this command are the absolute or relative pathnames of

the directory we wish to go to, which can include ‘..’ to indicate a higher (or parent)

directory.

e.g. cd ..

cd ~user/bin
takes us to the bin directory in User’s home directory.

ls (LiSt)
ls [-adlFh1] [names]

Lists the directories and files in a directory. As for the cd command, the arguments to

this command are optional. With no argument, all the contents of the current directory are

listed. For each directory argument, ls lists the contents of the directory; for each file

argument, ls repeats the filename and any other information requested (specified by the

optional flags). With no flags, ls just prints the plain name(s) of the contents. The more

frequently used flags are –a, -l, -F. –a (All) lists all entries, including those that begin

with a period (.), which are normally not listed. -l (Long) prints the list in long format,

giving mode, number of links, owner, group, size in bytes, and time of last modification

for each file. –F (Filetype) allows instant visualisation of the type of the contents being

listed: it puts a slash (/) after each filename if the file is a directory, an asterisk (*) if the

file is executable, an @ if the file is a link. Another useful flag is the –1 (the number one)

flag, which will print each filename on a separate line. The -d (Directory) flag will list

the name of a directory without listing its contents, and is often used to check the status

of a directory. The -h (Human-readable) flag is usually used when listing large files,

since it will print out the size in an easy-to-read format. The size will consist of the

number of units followed by a unit specifier ('b' for bytes, 'K' for kilobytes, 'M' for

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 10

megabytes, 'G' for gigabytes, etc.). If two or more of these flags are used together,

because none of these flags take an argument, they can be typed together:

e.g. ls -alF

(Note that there are no spaces between the flags, and only one dash. Also be aware that

the argument to the ls command is put after any flags.)

mkdir (MaKe DIRectory)
mkdir [-p] dirname . . .

Creates a directory. In this case, the argument to the mkdir command is not optional.

This command needs to know the name of the directory it must create. It is possible to

create a directory along a branch of the hierarchical tree which has not yet been created.

In this case, the –p flag (Parent) creates all the non-existing parent directories first. The

‘. . .’ at the end of the syntax line indicates that more than one argument can be given to

this command.

e.g. mkdir –p these/directories/have/not/yet/been/created

will create not only the directory ‘created’, but all the other directories in this tree

which do not already exist.

Viewing file contents

cat (conCATenate)

cat file . . .

Reads each file in sequence and writes it to the standard output.

more (MORE)
more [file ...]

Writes the file specified as an argument to standard output, one screenful at a time. The

next screenful is displayed by hitting ‘Enter’.

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 11

head (HEAD)

head [-count] [file ...]

head [-n count] [file ...]

Prints a specified number of lines from the specified file to standard output. In this case,

there is more than one way to use the head command. Both syntaxes gives the same

output (-count and –n count both display only the given number (count) of lines

specified). If the number of lines is not specified, the default number of lines is 10. This

is the first command we’ve come across which takes a commonly used flag which takes

an argument.

e.g. head –20 file1

will print out the first 20 lines of the file file1. The same result is obtained if we type:

head –n 20 file1

tail (TAIL)

tail [-f] [-c number | -n number] [file]

Prints the specified file to the standard output beginning at a designated place. With no

flags, tail writes the last 10 lines of a file to standard output.

sort (SORT)
sort [-nr] [-k keydef] [files]

Sorts the file based on some sort criteria. By default, sort sorts the lines in the file into

ascending order. The –r flag invokes reverse sorting. Each line is divided into fields

separated by spaces or tabs (the field separators can be changed using the –t flag). By

default, all fields are used to sort the file. Specific fields can be used to sort the file,

chosen by using the –k flag, or field pos1 to field pos2. The –n flag sorts line

numerically.

e.g. sort –k2 file.txt

sorts file.txt according to the second field

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 12

Manipulating files

mv (MoVe)

mv file1 [file2 ...] target

Moves file1 to the location at target. If target already exists, it will be

overwritten. This command is often used to rename files.

cp (CoPy)

cp file1 [file2 ...] target

Copies file1 to the location at target, so that there are now two copies of the same

file (at file1 and target). If target already exists, it is overwritten.

Searching file content

grep (Global Regular Expression Pattern)

grep [-c] [-n] [file . . .]

Searches the specified file(s) for a pattern, and prints out the lines that contain that

pattern. The pattern can be a character string, or can be a ‘regular expression’ (explained

in more detail later). With the –c flag, the number of lines that contain the pattern is

printed out instead of the lines themselves. The -n flag prints out the line number on

which each match is found.

e.g. grep hello myfile

will print out all the lines that contain ‘hello’ in the file myfile.

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 13

Other commands

alias (ALIAS)

alias [alias_name[=string] ...]

Defines or displays aliases. An alias is commonly set when a command is used often, or

is quite long, and the user-defined alias is a short command which ‘points’ to the original

command. If you use the alias_name argument on its own, the original command that

the alias is pointing to will be written to standard output, if it is defined. To set an alias,

after the alias_name that you want to call your new command, enter the original

command, in single quotations marks. If no arguments are given, all the aliases currently

available during this session will be written to standard output.

e.g. alias h20 ‘head –n 20’

will return 20 lines from the start of a file every time you run the command h20, instead

of the default 10.

unalias (UNALIAS)

unalias alias-name...

unalias -a
Removes alias definitions. With an alias_name argument, unalias will only remove the

alias definition for that alias. With the –a flag, all aliases currently available in the

session will be removed.

echo (ECHO)

echo [-n] [arg] ...

Writes its arguments separated by blanks and terminated by a newline (except when -n is

specified) to the standard output.

e.g. echo hello my name is elvis

prints hello my name is elvis to standard output

wc (Word Count)

wc [-c|-m] [-lw] [names]

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 14

Counts the number of words, lines or characters in a file, or in standard input if no

names argument is given, and prints the result to standard output. The most commonly

used flag is the –l flag, which counts the number of lines in a file. If no flags are given,

the command defaults to wc –lwc, which outputs the number of lines (-l), the number

of words (-w), and the number of bytes (-c). The number of characters is given by -m.

When multiple files are specified, the names of the files will be printed to standard output

along with the specified counts.

e.g. wc –l myfile

tells you how many lines there are in myfile.

ln (LiNk)

ln [-sif] file1 [file2 ...] target

Links files. If the user wants to have access to a file which is in another directory, but it

may be too large to copy (for disk space reasons, perhaps), he can link the file1 in the

other directory to the target file in the present directory. If target already exists, the

ln command will fail. The -s flag creates a symbolic link. A symbolic link is a special

kind of file whose contents are the name of another file.

e.g. ln -s /usr/bin/databases/large/database_file largefile

Now largefile in the present directory will point to the database_file in the

/usr/bin/databases/large/ directory, so that when the user wants to use

database_file, he can work with largefile instead.

rm (ReMove)
rm [-i] file ...

rm -r [-i] dirname . . . [file . . .]

Removes files. Use this with caution. Once a file has been removed, you CANNOT

retrieve it. For safety, some people alias the rm command to rm –i, the –i flag requiring

confirmation of the removal of every file selected. However, in practice, this tends to be

tedious. The –r flag allows you to remove a directory recursively, i.e. delete all the files

in that directory and in any subdirectories that directory might contain, as well as the

subdirectories themselves.

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 15

rmdir (ReMove DIRectory)

rmdir dirname . . .
Removes a directory. Works as for rm –r above.

man (MANual)

This command prints out the description of a command, its uses, and syntax. Some

manual pages can be a little dry.

apropos (APROPOS)

apropos [keyword]

Prints out the list of commands that include this keyword in their description. This is

useful when you don’t know what command to use for some particular job.

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 16

Useful tidbits

Wildcards (*, ?)

An asterisk (*) is used to denote a wildcard. As the name suggests, a wildcard is a

symbol that can stand for any number of characters (zero or more). The ? wildcard can

stand for any one single instance of any character.

e.g. ls text*

lists all files in the current directory which begin with the string text, such as text,

text.txt, text3.txt, text2.
ls text?

Will only list text2.

Redirection of output (>)

When we run a command, we usually get some sort of output written to standard output.

Some commands have an option where we can specify an output file. In cases where this

option is not available, and we would like to save the output that appears in the standard

output. We can ‘redirect’ the output of the command to a specified file, using the ‘>’

operator.

e.g. cat myfile.* > allmyfiles

will print out the contents of all files which begin with ‘myfile.’ (in list order), (e.g.

myfile.txt, myfile.bak, myfile.rubbish, but not myfile itself, because

it is not followed by a period, nor will it list myfile3.txt), and save the result into a

new file called newfile.

Another way that cat can be used with the redirection operator is:
cat > newfile

Press return, then type whatever you want to be put into the file newfile, and then once

you have finished, press return again, and Ctrl-D.

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 17

Piping (|)

Sometimes we may want to use the output from one command as input for another. In

these cases, we can save the output from the first program into a file, and then invoke that

file as an argument for the second command, or we can utilize a procedure known as

‘piping’. This involves entering the first command, followed by ‘|’ followed by the

second command. This only works when the output from the first command is directed to

standard output, and the second command can take input from standard input.

e.g. ls –1 * | wc -l

which will list all the files in the current directory, one per line, and then the wc –l

command will count number of lines. In effect, this tells you the number of files in the

current directory.

Jobs

Any command that is being processed is called a job. While a command is being

processed, it is said to be ‘running.’

Commands can take variable amounts of time to run, depending on their complexity,

ranging from a few milliseconds to days. While a command is running, the shell that is

processing that command cannot be accessed. In effect, what this means is that if you

type a command after the prompt, and start it running, the prompt will only reappear (and

you will only be able to enter further commands) once that process has been completed.

When this happens, there are two ways of getting back a prompt and entering further

commands: you can cancel the job, usually by typing Ctrl-C (this may differ according to

the way the system is set up), or you can background the job. What this means is that you

leave the job running in one shell, but you open another shell on your terminal, where

you can now enter further commands. When the job finishes, you will get a notification

telling you that the job has finished, and the shell that was running that job is closed.

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 18

You can background jobs in one of two ways.

1. If you know that the job might take some time, you can type an ampersand

(&) after the command, before hitting ‘Enter.’ This automatically creates a

shell for the job to run in, and gives you a shell in which to enter commands.

2. If the job is taking more time than you thought, you can pause or ‘suspend’

the job by typing Ctrl-Z, the prompt reappears, and then you can enter ‘bg’

(BackGround), which opens a new shell for the job to run in the background.

ps (Process Status)
ps [options]

This prints to the standard output information about the current processes associated with

the session. This information includes the process ID, terminal identifier, cumulative

execution time (how much time the process has taken so far) and the command name.

jobs (JOBS status)

jobs [-l | -p][job_id...]

Lists and displays the status of currently running jobs in the current shell environment.

kill (KILL)
kill [-signal] pid. . .

kill -signal -pgid. . .

kill -l

Terminates a process. The process to be terminated should be identified by its PID

(process ID). This can be obtained using either the ps or the jobs commands. By

default, kill sends a termination signal which causes the process to end. Some

processes protect themselves, so to make sure that a process is killed, use

kill –9 <pid>

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 19

Permissions

Every file in a Unix system is owned by somebody. Permissions include read, write,

execute, and permissions indicate who is allowed to do what with any given file. To see

the current permissions of a file, type ls –l filename. At the beginning of the line

describing this file are a series of letters or hyphens, e.g. –rwxrwxrwx filename

The letters r, w, and x represent ‘read’, ‘write’ and ‘execute’ permissions, respectively.

There are three sets of these letters, the first set indicating the permissions that the user

himself has for this file, the second group showing the permissions that the group of user

that the user belonngs to has, and the third showing the permissions for all other users

who have accounts on the system. Permissions can be referred to either symbolically or

absolutely. The symbolic representation of the permissions is that shown above, with

letters indicating read, write and execute permissions. The absolute representation uses

numbers. For every group of three, r has the value of 1, w is 2 and x is 4. Adding these

numbers gives the absolute representation of permissions for that group, e.g. 734

filename means that the user has read, write, execute (1+2+4) permissions, the group

has read and write permissions (1+2) and all other users have execute (4) permissions

only.

chmod (CHange permissions MODe)

chmod [-R] mode file ...

chmod [-R] [ugoa]{+|-|=}[rwxXstl] file ...

Changes the permissions mode of a file or directory. Changes can be made using either

the symbolic or absolute representations. If symbolic representations are used, the

group(s) whose permissions are being changed must be specified (the groups are

indicated using letters: u: user; g: group; o; others; a: all, i.e. user, group and others) as

well as whether the permissions are being added or removed.

Absolute: chmod 741 filename

 Changes the permissions of filename to read, write and execute for the user,

execute only for the group, and read only for all others.

Symbolic: chmod ug+wx filename

 Gives the user and group write and execute permission.

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 20

Stringing commands together (;)

You can have more than one command on the same line, separating them by using ‘;’.

This finishes the first command, then executes the second (and third, etc). You can have

as many commands on the same line as you want, separated by semi-colons.

e.g. ls –al * | wc –l > myfile; chmod 700 myfile; ls –l myfile

This lists all the files in the current directory in long format, counts the number of lines

generated this way, and saves the number to a file called myfile. We then change the

permissions on myfile, and do list the long format information on myfile to make

sure that the permissions are what we want them to be.

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 21

Regular expressions (REs)

Regular expressions are patterns that can match a family of character strings. They are

used in a number of Unix commands (e.g., grep, egrep) and can be very powerful.

Regular expressions are composed of regular characters, and characters that have a

special meaning within the context of the regular expression. The special characters are:

1. . matches any single character.

2. * if this follows a character, matches zero or more occurrences of the character.

3. ^ matches at the beginning of a line only.

4. $ matches at the end of a line only.

5. [] matches any one occurrence of the characters enclosed within the brackets. If

a hyphen is included, this indicates a range. All of the above special characters

lose their special meaning within the brackets. ^ takes on another special meaning

within these brackets. If ^ is the first character within the brackets, this indicates

that the string should match any character except those in brackets.

6. \ makes all of the above special characters lose their special meaning (including

itself). Its special effect is also lost within brackets, as above.

The regular expression will match the longest expression it can in the piece of text that

you are looking for the regular expression in.

e.g.,

1. l.*g means match any patterns that contain an l, zero or more characters,

followed by g. Matches along, algorithm, log, long, loving,

leading.

2. \. matches a period

3. e.$ means match a word at the end of a line that ends with an e followed by

one instance of any other character. Matches ‘He saw her in the

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 22

tree’, ‘The man was me.’, ‘Well met’, but not ‘Did you know

her?’

4. [^a-m]nd matches a string with nd, preceded by onr instance of any

uppercase letter or lowercase n-z. Matches ‘And then I saw her

face’ ‘What a wonderful world it is’

Text processing using awk

awk (named after its developers Aho, Weinberger, Kernighan)
awk [-F re] [-v var=value] ['prog'] [file. . .]

awk [-F re] [-v var=value] [-f progfile] [file. . .]

The awk utility is a very useful and highly comprehensive application, almost being a

programming language in its own right. The more immediately usable features are

described here, but it is recommended that the interested user take a look at some of the

extensive manuals and tutorials on this.

awk works by scanning each line in a file and performs certain commands for lines

matching specific criteris. Each line is split up into fields, the default field separators

being spaces or tabs. The field separators can be user-defined as any regular expression,

using the -F flag. Every field in a line canbe specified by its numbered position, i.e., the

first field in a line is called by $1. The built-in variable NF is the number of fields on a

given line, so the last field in a line is called using $NF. The whole line is referred to by

$0. Any action to be performed can either be put on the command line (as all out

examples will be) or put into a file, which can then be specified on the command line

using the –f flag. The most commonly used command is print.

e.g. awk ‘{print NF, $1, $NF}’ file.txt > file.out

scans file.txt, and for every line prints the number of fields that line has, the first

field and the last field to a file called file.out. The “action” that the awk command

performs is put into single quotes and curly brackets. The commas after the print

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 23

statement indicate that a space should be inserted after the number of fields (NF) and the

first field ($1).

If our file contained lines such as:

P08100 (human) R98765 (rat) U56567 (elephant)

and we wanted to take all the organisms out of the file, and list them all on a separate

line, we could use an awk command such as:

awk –F “[()]” ‘{print $2”\n” $4 “\n” $6}’ ac.txt >

organism.txt

where we use the regular expression [()] (enclosed in double quotations marks to

escape the metacharacters ‘(‘ and ‘)’) to denote the range of characters that fit our field

separators. The organism name is then every second field, which we print out, followed

by a newline character (“\n”), so that organism.txt now looks like:

human

rat

elephant

We can specify more complicated actions, that include logical and conditional

statements.

e.g., awk ‘{if (NF < 10) print $0}’ file.txt

prints out only those files whose lines have less than 10 fields.

e.g., awk ‘{for (i = NF; i >= 1; i--) print $i}’ file.txt

prints each line in a file with the fields in reverse order, one field per line.

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 24

Text editors

There are two text editors which are widely used: vi and emacs. Which one you use is a

matter of preference. Every Unix system has some version of vi installed, and most

system administrators install emacs. In this course, we will go into some detail in the

use of vi.

vi (VIsual display editor)

There are three ‘modes’ in vi: a ‘surfing’ mode, in which you can move around the file

and delete text; an ‘input’ mode, where you can insert new text into the file; and

‘command’ mode, where you can substitute text, search for text, delete text, access the

shell, and save changes to the file.

From ‘surfing’ mode, you can access either ‘input’ mode, or ‘command’ mode. To exit

input mode, pressing ‘Escape’ brings you back to surfing mode. Command mode is only

active for one command, after which you are returned to surfing mode.

To open an existing file myfile in vi, type vi myfile. The file will be opened in

surfing mode. The cursor is initially set at line1, character1 of your text.

Surfing mode.

The movement keys are:

up: k

down: j

left: h

right: l

scroll up a page: Ctrl-b (Back)

scroll down a page: Ctrl-f (Forward)

last line of the file: Shift-g (G).

advance a word: w

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 25

You can put the cursor anywhere in the text in this fashion (a bit like clicking your mouse

button at any given position on a word processor like Word).

To move to a certain word in the file, use / (if the word is further down in the text) or ?

(if the word is further up in the text) followed by the word/string/regular expression you

want the cursor to be at. If the word appears more than once, you can go to all

occurrences of the word by repeatedly entering / (or ?). There is no need to retype the

word you are looking for after the first time, just like the ‘Find’ and ‘Find Again’

commands in a word processor.

You can also ‘Cut’, ‘Copy’ and ‘Paste’ text in surfing mode: (x refers to a single

character, w to a word, and doubling the command refers to a line):

 x: deletes the character under the cursor.

 4x: deletes the character under the cursor and the next three characters.

 dd: deletes the whole line that the cursor is on.

 dw: deletes the word that the cursor is in.

 5dd: deletes the current line, and the next four lines.

 Shift-d (D) deletes the line from the cursor position to the end.

If a line is deleted like this, it is kept in memory until the next command (any keystroke,

except for moving around), like a ‘Cut’ command in a word processor. To put the deleted

line(s) somewhere else in the text, type ‘p’, and the line is inserted under the line you are

currently on (like ‘Paste’ in a word processor). Uppercase P will insert the deleted line

above the current line. If you deleted characters or words instead of lines, then the text

will be placed just after your cursor position. To ‘Copy’ characters, words or lines, use

‘y’ (yank) instead of ‘d’.

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 26

Other miscellaneous commands in surfing mode:

 r (replace) allows you to replace the character your cursor is positioned over

(e.g., rt will replace the current character with t).

 Shift-j (J) joins the line the cursor is on, and the line below it.

 0 moves to the beginning of the line

 $ moves to the end of the line

Input mode:

There are three main ways to insert text:

a (append) allows you to start typing after the cursor position;

i (insert) allows you to start typing just before the cursor position;

o (open line) makes a new line below the line you are currently on, and allows

you to start typing at the beginning of that new line.

Shift-a (A) allows you to start typing at the end of the current line;

Shift-i (I) allows you to start typing at the beginning of the current line;

Shift-o (O) opens a new line for typing above the line you are currently on.

To delete a character you have just inserted, most systems will allow you to use the

‘Delete’ key, but on some systems you may have to use Ctrl-H.

Command mode:

To enter command mode, type ‘:’. The ‘:’ will appear at the bottom of your editor

screen. There are five main commands that are used here:

 Moving to a specific line

:<number> takes you to that line in the file. You can find out what line

the cursor is on using Ctrl-G in surfing mode.

 Inserting another file

:r <filename> copies filename into the file being edited, under the

line the cursor is on.

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 27

 Deleting lines

:<line1>,<line2>d deletes all lines from line1 to line2. To

refer to the last line, use $, e.g. :89,$d deletes all lines from 89 to the end of

the file. To delete from the current line to the end of the file, you can use :.,$d

 Substituting text

:<line1>,<line2>s/<pattern1>/<pattern2>/[g]

substitutes pattern2 for pattern1 in the file between lines line1 and

line2. Pattern1 can be a string or a regular expression. The (optional) ‘g’ at

the end indicates that this substituution shoud be done globally, which means that

if pattern1 appears more than once on any line, we should replace all

occurrences of it on that line with pattern2. If we only wanted to change the

first occurrence of pattern1 on any line with pattern2, we would leave out

the ‘g’. This can also be used for deleting text. If we leave pattern2 blank,

then pattern1 is replaced with nothing, in effect deleting it.

 Saving and exiting from vi

 :w (write) saves the file

 :w <filename> saves the file to filename

 :<line1>,<line2>w <filename> saves the range of lines

indicated to filename

 :wq (write and quit) saves the file and exits vi

 :q! exits vi without saving any changes

Typing u (undo) at any point will undo the last command.

emacs

emacs is a popular Unix full-screen editor from Free Software Foundation, installed on

most Unix systems. It allows the use of the delete key besides the arrows (unlike vi). It

also automatically saves the original copy with a different name, so if the changes turn

out to be unneeded or unwanted, you can go back to the previous version.

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 28

emacs is useful because a) lines longer than ~4800 characters are uneditable in vi; and

b there is a useful utility called xemacs which uses menus so that the user does not have

to remember the various key-stroke commands.

emacs will not be covered in this course. If you wish to learn how to use it, there is a

useful tutorial available.

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 29

Shell scripts:

Any series of shell commands may be stored inside a regular text file for later execution.

A file that contains shell commands is called a shell script. Before you can run a script,

you must give it execute permission (chmod +x). Then to run it, you only need to type

its name. Scripts are useful for storing commonly used sequences of commands, and can

range in complexity from simple one-liners to complete programs. Any command which

can be executed at the Unix prompt can be executed within a shell script.

When a script is run, the kernel determines which shell the script was written for, and

then executes the shell using the script as its standard input. The Unix kernel determines

which shell the script was written for by examining the first line of the script. In our case,

we are only going to be looking at the Bourne Again shell (bash). The first line can either

read #!/bin/bash or there can be no standard first line at all, and the kernel will

interpret the script as a bash script. However, to get into good habits, it’s a good idea to

use #!/bin/bash as the first line. Another good practice is to name your bash scripts

with the suffix .bash.

A simple example of a bash script is:

example.bash

#!/bin/bash

echo you are

id

echo “The directory you are in is”

pwd

echo “The files in this directory are”

ls

echo “The date is”

date

(id is a command which prints the user’s name and ID, and name of the group the user

belongs to and that group’s ID; date outputs the current date and time)

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 30

This script outputs:
prompt> example.bash

You are

uid=1367(luce) gid=1000(physbio)

The directory you are in is

hosts/fulcrum/home/luce/tmp

The files in the directory are

example.sh

The date is

Mon Apr 8 12:00:06 EDT 2002

If you wanted to output the results of the commands on the same line as the echo

statement, you could either use echo –n (suppresses the newline), or enclose the

command in backwards quotes. The following example illustrates these uses.

#!/bin/bash

echo you are `id`

echo –n “The directory you are in is ” <you must put double

quotes around the echo statement when using the –n flag to

ensure that you get a space between the statement and the

result of the subsequent command>

pwd

echo “The files in this directory are ”

ls

echo The date is `date`

Variables

Variables are useful tools within shell scripts. Variables are names that have a value that

can vary (hence ‘variable’). Variables can be environment variables, or local variables.

Some of the more common environmental variables are: $HOME, $PATH, $USER,

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 31

$SHELL. Local variables are variables that are created by the user, usually only lasting

within a particular session, or within a shell script. The value of a variable can change

during the course of the execution of a shell script.

When the value of the variable needs to be used, the variable name is called, preceded by

a $. This tells the shell to replace the variable name with the variable value. In the

Bourne shell, we assign a variable like this:
variable=value

There are NO whitespace characters around the ‘=’. To use that variable, we can then

type $variable. The shell then interprets this as being value. If the variable name is

immediately followed by other characters that could be interpreted by the shell as being

part of the variable name, the variable name itself is enclosed in curly brackets, e.g.
verb=paint

echo I like ${verb}ing

Output:

I like painting

But if you tried:
echo I like $verbing

the output would be:

I like

because the variable name verbing would have no value (unless it had been previously

assigned).

You can make a local variable an environmental variable (for that session) by using the

export command.
export variable

makes variable an environmental variable. Note that you use the variable name alone

(i.e., without the $).

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 32

Reading text from the terminal

The command to read text from the terminal is read. This command tells the script to

wait until the user enters some text from the keyboard, then reads one line from the

terminal, one line defined as ending with a newline character, and assigns each word to a

variable. Any words that are left over are all assigned to the last variable.

e.g.

name.bash

#!/bin/bash

echo enter your name

read name

echo Your name is $name

prompt> name.bash

enter your name

luce

Your name is luce

name2.bash

#!/bin/bash

echo enter your full name

read firstname lastname

echo Your first name is $firstname

echo Your last name is $lastname

prompt> name2.bash

enter your full name

luce skrabanek

Your first name is luce

Your second name is skrabanek

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 33

Command line arguments

You can also pass information in to a shell script in much the same way as you do with

the commands that we have seen before. Just as a Unix command such as mkdir takes

an argument, so you shell script can take an argument too. Command line arguments are

identified by variables whose names indicate their position after the command itself.

Thus, $1 refers to the first argument after the command (the value of $0 is the command

name itself), $2 is the variable of the second argument, and so on, up to $9. All command

line arguments can be referred to by the single variable $*.

e.g.
arguments.bash

#!/bin/bash

echo 1 $1

echo 2 $2

echo $3 3

echo $4 4

prompt> arguments.bash have a nice day

1 have

2 a

nice 3

day 4

Expression evaluation (expr)

This command is used to calculate arithmetic functions. expr evalutates expressions

which can be mathematical or logical. It also has some string operators. Once it has

evaluated the expression, it sends the result to standard output.

e.g. expr 1 + 1

Each component of the expr expression has to be separated by whitespace. All shell

metacharacters ((,),<,>,|,&,;,*) must be ‘escaped’ by a back slash (\).

Expressions can be grouped using \(expr \).

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 34

e.g.,

expr.bash

#!/bin/bash

echo Enter three numbers

read a b c

echo `expr \($a + $b \) * $c`

prompt> expr.bash

Enter three numbers

1 2 3

9

The numerical operators supported by expr, in order of precedence, are:

 multiplication (*), division (/), modulus/remainder (%)

 addition (+), subtraction (-)

 comparison operators (=>, >, =, <=, !=)

 logical operators: and (&), or (|)

The numerical operators work on integer values only.

The string operators supported by expr are:

 match <string> <regular expression>, also written as

<string> : <regular expression>

 returns the length of string if string and regular expression

match, otherwise 0; e.g., echo `expr “fred” : “.*r.*”` returns 4 (the length

of fred).

 substr <string> <start> <length>

 returns the portion of string that starts at position start and is

length characters long;

 index <string> <character list>

 returns the integer index of the first character in string that matches any

of the characters in character list;

 length <string>

 returns the length of string

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 35

Expression testing (test)

The test command evaluates various expressions or determines whether they are true or

false. There are a number of expressions that can be used, some of which are listed

below. They are often used in the conditional loops that are detailed below. Expression

tests return integers. When an expression is true, a value of 0 is returned, otherwise it

returns a non-zero integer. The spaces used in the list below are important. Only a

selection of possible tests is given.

-l <string> Returns the length of string

string1 = string2 Returns true (0) if string1 is equal to string2

string1 != string2 Returns true if string1 is not equal to string2

integer1 –eq integer2 Returns true if integer1 = integer2

integer1 –ne integer2 Returns true if integer1 != integer2

integer1 –gt integer2 Returns true if integer1 > integer2

integer1 –ge integer2 Returns true if integer1 ≥ integer2

integer1 –lt integer2 Returns true if integer1 < integer2

integer1 –le integer2 Returns true if integer1 ≤ integer2

! expr Returns true if expr is false

expr1 –a expr2 Returns true if both expr1 and expr2 are true

expr1 –o expr2 Returns true if either expr1 or expr2 is true

e.g.
test 10 –gt 5

returns true (or 0)

and
test 10 –le 5

returns false

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 36

Conditional loops (case...esac)

The case command executes various lists of commands based on the value of a single

string. It compares the value of the variable to a predefined list of values. The set of

commands it executes are those where the value of the variable and one of the predefined

values are the same.

e.g.

case.bash

#!/bin/bash

echo Enter your favorite color

read color

case $color in <compares the value of $color to:>

 “blue”|”green”) <blue and green. If $color is

either blue or green, executes this list of commands>

 echo “That’s a lovely color.”

 ;;

 “purple”) <$color is compared to purple>

 echo “That’s my favorite color too!”

 ;;

 “red”) <$color is compared to red>

 echo “My bedroom is painted that color.”

 ;;

 *) <all other user inputs>

 echo “Oh, that’s strange.”

 ;;

esac

prompt> case.bash

Enter your favorite color

purple

That’s my favorite color too!

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 37

prompt> case.bash

Enter your favorite color

turquoise

Oh, that’s strange.

Conditional statements (if...then...elif...else...fi)

The if command processes a list of commands if some condition is met. This loop

structure can become very complex, as you can have any number of conditions, and

different sets of commands that must be processed depending on whether the conditions

are met or not.

e.g.
if1.bash

#!/bin/bash

echo “I’m thinking of a number. Can you guess it?”

read number

if test $number –eq 23

 echo “Well done! You’re amazing!”

else

 echo “Nope. That wasn’t it.”

fi

prompt> if1.bash

I’m thinking of a number. Can you guess it?

23

Well done! You’re amazing!

prompt> if1.bash

I’m thinking of a number. Can you guess it?

191

Nope. That wasn’t it.

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 38

if2.bash

#!/bin/bash

echo Enter two numbers

read first second

if test $first –gt 10

then

 if test $second –gt 10

 echo “You like big numbers.”

 else

 echo “Up and down – I suppose you think you’re

unpredictable.”

 fi

elif test $first –eq 10

then

 if test $second –eq 10

 echo “Looks like you like 10s.”

 else

 echo “Good choices.”

 fi

elif test $second –lt 10

 echo “You like small numbers.”

 else

 echo “You should be a random number generator.”

 fi

fi

prompt> if2.bash

Enter two numbers

10 34

You should be a random number generator.

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 39

Iterative loops (for...do...done)

The for command allows a list of commands to be executed several times, using a

different loop variable in each iteration.

e.g.
for.bash

#!/bin/bash

for animal in lion pig dog zebra cat <for every word in

this list, do the list of commands in the do...done loop.

In each successive loop, the variable animal takes on the

value of the next word>

do

 echo I like ${animal}s

done

prompt> for.bash

I like lions

I like pigs

I like dogs

I like zebras

I like cats

rename.bash

#!/bin/bash

ls

for file in `ls –1`

do

 mv $file new$file

done

ls

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 40

prompt> rename.bash

test1.txt <lists the files in the current directory>

test2.txt

newtest1.txt <lists the renamed files in the directory>

newtest2.txt

Iterative loops (until...do...done)

The until command repeats a list of commands until some condition is met.

e.g.
until.bash

#!/bin/bash

echo Enter a number

read number

until test $number –gt 6

do

 echo Piggy number $number went to the butcher

 number=`expr $number + 1`

done

prompt> until.bash

Enter a number

3

Piggy number 3 went to the butcher

Piggy number 4 went to the butcher

Piggy number 5 went to the butcher

Piggy number 6 went to the butcher

© L. Skrabanek, Weill Cornell Medical College, 2004-2014 41

Iterative loops (while...do...done)

The while command repeats a list of commands as long as some condition is met.

e.g.

while.bash

#!/bin/bash

x=1

while test $x –le $1

do

 y=1

 while test $y –le $1

 do

 echo –n `expr $x * $y` “\t“ <inserts a tab>

 y=`expr $y + 1`

 done

 echo <prints a new line>

 x=`expr $x + 1`

done

prompt> while.bash 3

1 2 3

2 4 6

3 6 9

