
Introduction to Unix

19 Overview of Relational Databases

19.1 Lecture

1. Databases are used to store information in a structured manner. This means that there are lots of
rules that you can set up which the database will enforce. While this can be frustrating and seemingly
pedantic at times, it does mean that when you use your data, you will have hard guarantees about
its contents and format; this makes your applications much more robust.

2. We will be working with ‘relational database’ technology. In a relational model, all data are stored
in ‘tables’. These tables have well defined columns, which are called ‘fields’. Each row in a table is
called a ‘record’. The key element of the relational model is that records in di↵erent tables can be
associated with one another, typically based on common field values.
(a) Consider these three tables . . .

Table 1

Nation Continent
USA North America
Italy Europe
Spain Europe
France Europe

Table 2

Artist Nation
Dante Italy
Davinci Italy
Degas France
Michelangelo Italy
Miro Spain
Pei USA

Table 3

Artist Discipline
Dante author
Davinci architect
Davinci painter
Davinci sculptor
Degas painter
Michelangelo architect
Michelangelo painter
Michelangelo sculptor
Miro painter
Pei architect

(b) You can determine the continent that Dante comes from by . . .
i. Find the record in Table II where the value of the Artist field is ‘Dante’.
ii. Note the value of the Nation field (‘Italy’) in this table.
iii. Find the record in Table I where the value of the Nation field is ‘Italy’.
iv. Note the value of the Continent (‘Europe’) field in this record.

(c) Relational databases do things like this very quickly and e�ciently.
3. Some common relational databases that you may have heard of include Oracle, IBMs DB2, Microsoft

SQL Server, MySQL, and PostgreSQL. These are large relational database systems that are appro-
priate for enterprise applications. They support many users at the same time, have complex security
models, and lots of advanced features. Because of this, it is quite involved to set them up, and con-
sequently you need to do quite a bit of work before you can perform even the simplest actions (such
as creating your first table and putting some data in it).

© Copyright 2004-2020 J. Banfelder, L. Skrabanek, Weill Cornell Medical College page 25

Introduction to Unix

20 Installing Open Source Software Under Linux

20.1 Lecture

1. One of the great advantages of working in the Linux ecosystem is that there is a wealth of free, open
source software available (there is also quite a bit of such software available for Windows and Mac
OS X). Quality varies from really poor to best-of-breed, enterprise class; often the hardest part of
using open source software is finding the right package or application to meet your needs.

2. To facilitate our exploration of relational databases, we will install a lightweight relational database
tool called sqlite3. We will do this by downloading the source code for the program and compiling it
ourselves.
(a) You can often find ‘pre-compiled binaries’ for many programs; these are usually easier to install

and get running. However, compiling the programs yourself (aka: ‘installing from source’) often
leads to better compatibility.

(b) In practice, only one of us would have to build sqlite3 and everyone could use that copy of the
program. However, for instructional purposes, we’ll all install our own copies.

(c) Installation procedures for open source software vary widely the best thing to do is read the
instructions (often found in a file called README or INSTALL that comes with the distribu-
tion).

(d) The installation of sqlite3 is typical of many packages.
3. The quality of the install process and documentation is usually a very good indicator of the quality

of the package. If you can’t get the package to build properly on a normal system without too much
fuss, you may want to reconsider using that particular package.

20.2 Exercise

1. Download the source code tarball.
(a) Open your laptop’s web browser and navigate to http://www.sqlite.org/

(b) Go to the ‘Download’ page.
(c) Right click (or control-click on a Mac) on the second link in the ‘Source Code’ section to select

the file for the command line program (sqlite-autoconf-3240000.tar.gz) and choose ‘Copy
Link Location’. This will paste the URL for this file onto the clipboard. Note that you don’t
want to download this file onto your laptop; you want it on the Linux computer.

(d) Go back to the terminal and create a directory called downloads in your home directory. This
is a common convention for storing files that have been downloaded from the Internet. into
this directory.

(e) Now download the file from the internet by entering the command below; note that you
don’t have to type the URL, just paste it using the terminal’s paste command (mouse right-click
if you are using putty).
i. https://sqlite.org/2018/sqlite-autoconf-3240000.tar.gz

2. Unpack the distribution tarball (you do remember how to do that, right?).
(a) Usually you want to do this in a temporary directory.
(b) Have a look at the README and CONFIGURE files in the distribution
(c) The size of the sqlite3 package is quite small. It is not uncommon to see hundreds or thousands

of files in larger packages.
3. To build sqlite3 enter the following commands:

(a) $
(b)
(c)

4. Typically, a good open source software package will install for all users on a system with the com-

© Copyright 2004-2020 J. Banfelder, L. Skrabanek, Weill Cornell Medical College page 26

http://www.sqlite.org/
https://sqlite.org/2018/sqlite-autoconf-3240000.tar.gz

Introduction to Unix

mands: . However, the last step will try to put the software
in directories that you are not allowed to write to. The option to the com-
mand tells the installer to install this program in your home directory.
(a) Have a look in your ${ } directory. What do you think you need to add to your

PATH?
5. Phew! To test the installation, enter the following command:

(a) To quit sqlite3, enter (remember, when learning a new program, the first thing to learn
is how to get out of it).

6. . . . and there was much rejoicing!

© Copyright 2004-2020 J. Banfelder, L. Skrabanek, Weill Cornell Medical College page 27

Introduction to Unix

21 Your First Database

21.1 Lecture

1. Now that we have a working database program, let’s create our first database. Because we are a very
cultured group, we will create a database of artists.
(a)

2. We’ll now create our first table, and add a few records into it.
(a)

(b)
' ' ' '

(c)
' ' ' '

(d)
' ' ' '

(e)
' ' ' '

3. To see the tables defined in a database, use the command.
4. Next, well check that our data were added as expected.

(a)
USA|North America

Italy|Europe

Spain|Europe

France|Europe

5. The commands we have been entering at the sqlite¿ prompt are SQL commands. As you probably
noticed, SQL commands end with a semicolon; if you dont enter the semicolon, you get the chance
to continue the SQL command on the next line, as was done with the command.
(a) The keywords in SQL commands are not case sensitive; however, it is a common convention to

write the SQL keywords in uppercase.
(b) Di↵erent database systems have di↵erent rules for the case sensitivity of database objects (e.g.,

table names, field names). It is usually best to assume that they are case preserving, but not
case sensitive. Also, avoid special characters and whitespace in database object names.

6. Most relational databases use the same SQL language. When you get to more advanced features,
there are some subtle di↵erences.

7. Let’s take a closer look at the command. We asked for a table with two fields
(columns), and we specified that each column should contain values of ‘type’ . This
tells sqlite that it will be storing character data (or ‘strings’) in these fields. Furthermore, they are
suggested to be limited to 80 characters.

21.2 Exercise

1. Add a record for South Korea to the nations table in your database.
2. CHALLENGE: Try to add a record for China, but use its full, o�cial name: “The People’s Republic

of China”. Hint: read question 14 of the FAQ for sqlite.

© Copyright 2004-2020 J. Banfelder, L. Skrabanek, Weill Cornell Medical College page 28

Introduction to Unix

22 Importing Data

22.1 Lecture

1. Adding records to a database one at a time using SQL insert statements is less than fun, and is not
the typical mechanism for populating a table. If you have data in text files, a much more e�cient
way to bring the data into a database is to import it.

2. When we started sqlite, the program kindly told us to ‘Enter for instructions’. This is a hint
that we should . . . you guessed it . . .

3. Note the , , and commands. Can you guess how one would import a tab
delimited file?

4. When importing data, it is not uncommon to have to try a few options before you get it right. When
fighting with your database, you may need to change your table definitions, and/or clear all of the
records from a table before you attempt to repopulate it.
(a) Remember, you need to create a table before you can import records into it.
(b) To change a table definition, you need to get rid of the old table definition and create a new

one. To get rid of an old definition, use the SQL command: tablename

(c) It is often helpful to keep long SQL commands in a separate file that you can edit and re-execute
(and refer to later). The command facilitates this.

(d) To clear all the records from a table (but not change its definition), use the SQL command:
tablename

5. The set of all table definitions in a database is called its schema.

22.2 Exercise

Note: You may find it helpful to develop a single file that contains all of the commands for this exer-
cise.

1. Create tables to hold the data shown in Tables II and III in the Overview of Relational Databases
section above.

2. Import data into these tables from the files in ⇠ directory.
(a) Inspect these files manually to discover their format.

3. To check that you have imported the correct number of records, you can run a

(a) With which UNIX command can you compare this result?
4. Here is a file that achieves all of the above steps (as well as some of the previous commands).

(a) Note the use of the clauses in the commands.
(b) Note the use of absolute path names to refer to files. Why do you think this was done?

© Copyright 2004-2020 J. Banfelder, L. Skrabanek, Weill Cornell Medical College page 29

Introduction to Unix

⌥ ⌅
1 DROP TABLE IF EXISTS nations;
2 CREATE TABLE nations (
3 nation VARCHAR (80),
4 continent VARCHAR (80)
5);
6

7 INSERT INTO nations (nation , continent)
8 VALUES ('USA ', 'North America ');
9 INSERT INTO nations (nation , continent)

10 VALUES ('Italy ', 'Europe ');
11 INSERT INTO nations (nation , continent)
12 VALUES ('Spain ', 'Europe ');
13 INSERT INTO nations (nation , continent)
14 VALUES ('France ', 'Europe ');
15

16 DROP TABLE IF EXISTS artists;
17 CREATE TABLE artists (
18 artist VARCHAR (80),
19 nation VARCHAR (80)
20);
21

22 .mode csv
23 .import /home/unixinst/artists/artist_nation artists
24

25 DROP TABLE IF EXISTS artist_discipline;
26 CREATE TABLE artist_discipline (
27 artist VARCHAR (80),
28 discipline VARCHAR (80)
29);
30

31 .mode tabs
32 .import /home/unixinst/artists/artist_discipline artist_discipline⌃ ⇧

© Copyright 2004-2020 J. Banfelder, L. Skrabanek, Weill Cornell Medical College page 30

Introduction to Unix

23 Querying Databases Part I (Single Tables)

23.1 Lecture

1. The SQL command is used to query data from a database. This is a very complex command,
and we will only be scratching the surface here and in the next section.

2. We have already seen the most basic command.
(a)

i. In this command, the means ‘all fields’. If you want to see just the list of artists, you can
enumerate the field names you are interested in.

(b)
3. You can ask for only those records that meet certain criteria.

(a) ' '
4. Note that some queries will contain duplicate results.

(a)
' ' ' '

(b) In this case, we see some duplicates because we are only asking for the artist field, and we are
seeing results for each record in the underlying table that matches our search criteria.

5. Duplicates in a result set can be eliminated with a clause.
(a)

' ' ' '
6. By default, there is no intrinsic order to a result set. You will often see records in the order in which

they were added to the table, but this is not guaranteed. You can run the same query twice and get
the results back in a di↵erent order.
(a)

7. To ask the database to sort results, use the clause.
(a)

8. You can use sqlite commands within a pipeline. On the command line, place the (single)
SQL command you want to run after the database file name. The output of the query will go to
stdout.
(a) \

' ' ' $'

© Copyright 2004-2020 J. Banfelder, L. Skrabanek, Weill Cornell Medical College page 31

Introduction to Unix

24 Querying Databases Part II (Joining Tables)

24.1 Lecture

1. Although you can get a lot of mileage out of querying individual tables, the real power of relational
databases derives from their ability to e�ciently join data from multiple tables.

2. A join of two tables can be understood as first constructing a virtual table that contains all possible
combinations of all of the records from each source table, and then whittling down this virtual table
by applying the field selectors and SQL conditions that are part of the query (see the color
figures for a visual explanation).
(a) Databases don’t actually do this; they are quite smart and take many shortcuts. However,

the results you get are identical to those you would have gotten had the database actually
constructed, and then filtered, such a virtual table, so this is a useful mental model to have.

(b) All of the SQL clauses you have learned about so far (, and) can be
used in queries that involve joins.

(c) You can even do triple joins (a query across three tables).
3. Sometimes it is di�cult (although often usually possible) to answer your question in one SQL state-

ment. In this case, you may want to create temporary tables to hold intermediate results.
(a) You can create temporary tables with the command.
(b) Temporary tables are automatically dropped when you exit . This prevents the accumu-

lation of clutter.
(c) In the bigger database systems, temporary tables are only visible per database session, so your

temporary tables won’t interfere with the work of others, even when you are working o↵ of the
same database.

(d) Both the and SQL statements allow you to use a state-
ment to specify data to be added.

4. In an ideal database, you only store raw data. Any questions you have relating to the data are
computed at the time the question is asked using a SQL query. Storing intermediate results in
additional tables is problematic because if the underlying raw data are updated, your intermediate
tables become out of date. Most often, the best way to solve this problem is to avoid it.

24.2 Exercise

1. List all European architects, in alphabetical order.
2. List all European sculptors whose names contain the letter ‘m’.

(a) HINT: Find the description of the operator at https://sqlite.org/lang_expr.html
3. How many European artists are there (write a SQL query that returns this number; don’t list them

and count them yourself).

© Copyright 2004-2020 J. Banfelder, L. Skrabanek, Weill Cornell Medical College page 32

https://sqlite.org/lang_expr.html

Introduction to Unix

25 Schema Design and Normalization

25.1 Lecture

1. Designing a database schema is as much art as science. One important goal of schema design is called
normalization; this can be summed up as: “the database should be designed such that it is impossible
for the data in it to be inconsistent”. The primary consequence of this is that you store each raw fact
only once.

2. This schema for this table is not normalized because it records the fact that Italy is in Europe multiple
times.

Table 4: Bad Table

Artist Nation Continent
Dante Italy Europe
Davinci Italy Europe
Degas France Europe
Michelangelo Italy Europe
Miro Spain Europe
Pei USA North America

(a) If one of the records were changed to (incorrectly) indicate that Italy was in Africa, the data in
the database would be internally inconsistent. Experience has taught us that it is better to be
consistently wrong than to be inconsistent (it is easier to fix errors in the former case).

(b) CHALLENGE: Consider the case of Turkey, which is both in Europe and Asia. Can you think
of a schema able to model this?

3. There are no comment fields that SQL can understand for noting exceptions to your schema. If there
is even one case that doesn’t fit into your schema, you’ve got a problem and need to modify your
schema.

4. Don’t just assume that every file you import should correspond to its own table in the schema.
(a) For example, being provided with a file listing Italian artists, and another file listing American

artists, does not imply you should have two such tables. You can always recover the original
files’ contents with an appropriate query.

(b) A good acid test is to check if you would lose any information if you were to rename a file to a
nonsense name. If so, then you probably should add a field to hold that information. All records
imported from that file would have the same value. Information should be stored in records, not
in table names.

(c) If two tables have the same fields (i.e., they have the same logical meanings), you might consider
merging them into one table.

© Copyright 2004-2020 J. Banfelder, L. Skrabanek, Weill Cornell Medical College page 33

Introduction to Unix

26 A Practical Example

26.1 Exercise (as a group)

1. The ⇠ directory contains some real data from epigenetic microarray experi-
ments. Explore the data files and see if you can make any sense of them (this is how it works in the
‘real world’).

2. For e�ciency, database files should always be on a local hard disk. On our system, this means placing
the file in the filesystem. Make your own subdirectory there.

3. Design and implement a schema to hold this data.
(a) How many tables do you need?
(b) Is there any redundant information that should be removed to achieve a normalized database

design?
(c) It is sometimes a good idea to create indices on fields that are heavily used in searches and joins.

i. Use the SQL command to do this.
ii. Selection of fields to index is often made empirically by testing how long it takes to execute

particular queries.
4. Import the data into the database.

(a) When importing de-normalized data, it is often a good idea to check for internal consistency.
(b) What would you do if you found any inconsistencies?

5. Develop a query to print out the minimum, average, and maximum spot intensity for each probe set
(i.e., each SEQ ID).
(a) HINT: Use the clause in the command.

© Copyright 2004-2020 J. Banfelder, L. Skrabanek, Weill Cornell Medical College page 34

	Introduction (logging in, passwords)
	Lecture
	Exercise

	Looking at Files (ls, cat, more, head, tail)
	Lecture
	Exercise

	Directories (pwd, cd, relative and absolute pathnames)
	Lecture + Exercise

	Manipulating Files and Directories (cp, mkdir, mv)
	Lecture
	Exercise

	Introduction to Editing File Content - Part I (vi)
	Lecture
	Exercise

	Introduction to Editing File Content - Part II (vi)
	Lecture
	Exercise

	Deleting Files and Permissions (rm, rmdir, chmod)
	Lecture

	Some Cool Stuff
	Lecture

	Introduction to Pattern Matching (egrep)
	Lecture
	Exercise

	Redirection and Advanced Pattern Matching (egrep)
	Lecture

	Exercise
	Miscellaneous (date, cal, w, top)
	Lecture
	Exercise

	Surfing Efficiently in vi
	Lecture
	Exercise

	Please, No, Not More vi
	Lecture
	Exercise

	Non-interactive Editing (sed)
	Lecture

	Running Programs (environment variables, alias, which, background jobs)
	Lecture
	Exercise

	Manipulating Data (cut, csplit, sort, uniq)
	Lecture
	Exercise

	Compressing and Archiving Files (tar, gzip, gunzip)
	Lecture
	Exercise

	Overview of Relational Databases
	Lecture

	Installing Open Source Software Under Linux
	Lecture
	Exercise

	Your First Database
	Lecture
	Exercise

	Importing Data
	Lecture
	Exercise

	Querying Databases â•ﬁ Part I (Single Tables)
	Lecture

	Querying Databases â•ﬁ Part II (Joining Tables)
	Lecture
	Exercise

	Schema Design and Normalization
	Lecture

	A Practical Example
	Exercise (as a group)

	Introduction to Shell Scripting
	Lecture
	Exercise

	More Scripting Techniques
	Lecture
	Exercise

	Scripting Expressions
	Lecture
	Exercise

