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VII CRAN and Libraries

One of the major advantages of using R for data analysis is the rich and active community that surrounds
it. There is a rich ecosystem of extensions (also known as libraries or packages) to the base R system. Some
of these provide general functionality while others address very specific tasks.

The main hub for this ecosystem is known as CRAN (Comprehensive R Archive Network). CRAN can be
accessed from https://cran.r-project.org/. This is also where you go to download the R software.

Follow the Packages link to browse the 5000+ packages currently available.

Because R is a not a very specific search term, often when doing a web search, the term CRAN is used.

In the next section, we will learn how to use the ggplot2 package for preparing publication-quality figures.
Here we will download and install the tidyverse package, which includes ggplot2, as well as dplyr and tidyr
which we will be using shortly. This couldn’t be easier, because R knows all about CRAN.

install.packages("tidyverse") # Library name is given as a string

If this is the first time a package is being installed on your computer, R may ask you to select a CRAN
mirror. Pick something geographically close by. Note that you only have to install a package once per R
install.

Depending on how your computer (and R installation) is set up, you may receive a message indicating that
the central location for packages is not writable; in this case R will ask if you want to use a personalized
collection of packages stored in your home directory.

Installing a package does not make it ready for use in your current R session. To do this, use the library()
function.

library(tidyverse) # Library name is an object (not a string)

You need to do this in every session or script that will use functions from this library.
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VIII Plotting

Although R has some basic plotting functionality which we have seen hints of, the ggplot2 package is
more comprehensive and consistent. We’ll use ggplot2 for plotting for the rest of this workshop.

ggplot2 is written by Hadley Wickham (https://hadley.nz/). He maintains a number of other libraries;
they are of excellent quality, and are very well documented. However, they are updated frequently, so make
sure that you are reading the current documentation. For ggplot2, this can be found at. . .

https://ggplot2.tidyverse.org/reference/

In this workshop, we will also be using his tidyr and dplyr packages.

ggplot2 relies entirely on data frames for input.

1. Let’s make our first ggplot with the ablation data that we imported earlier.

ggplot(ablation, aes(x = Time, y = Score)) + geom_point()

At a minimum, the two things that you need to give ggplot are:

a. The dataset (which must be a data frame or an object that can be interpreted as one), and the
variable(s) you want to plot

b. The type of plot you want to make.

2. ggplot gives you exquisite control over plotting parameters. Here, we’ll change the color and size of
the points.

ggplot(ablation, aes(x = Time, y = Score)) + geom_point(color = "red", size = 4)

Aesthetics are used to bind plotting parameters to your data.

ggplot(ablation, aes(x = Time, y = Score)) +

geom_point(aes(color = Experiment), size = 4)

ggplot(ablation, aes(x = Time, y = Score)) +

geom_point(aes(color = Experiment, shape = CellType), size = 4)

3. When using ggplot, layers are added to a ggplot object, in order. You can add multiple layers.

ggplot(ablation, aes(x = Time, y = Score)) +

geom_point(aes(color = Experiment), size = 4) +

geom_text(aes(label = CellType), hjust = 0, size = 3)

It is sometimes useful to save o↵ the base ggplot object and add layers in separate commands. The
plot is only rendered when R “prints” the object. This is useful for several reasons:

a. We don’t need to create one big huge command to create a plot, we can create it piecemeal.

b. The plot will not get rendered until it has received all of its information, and therefore allows
ggplot2 to be more intelligent than R’s built-in plotting commands when deciding how large a
plot should be, what the best scale is, etc.

p <- ggplot(ablation, aes(x = Time, y = Score))

p <- p + geom_point(aes(color = Experiment, shape = Measurement), size = 4)

p <- p + geom_line(aes(group = interaction(Experiment, Measurement, CellType),

color = Experiment,

linetype = CellType))

print(p) # plot gets rendered now

© 2014-2023 L. Skrabanek, J. Banfelder, Weill Cornell Medicine Page 23 of 38



VIII PLOTTING

Sourcing a file will not automatically generate output, so here we have to explicitly ask for the plot
to be printed.

Here we’ve added a layer that plots lines. We want a separate line for each unique combination of
Experiment, Measurement, and CellType. The interaction() function takes a set of factors, and
computes a composite factor. Try running. . .

interaction(ablation$Experiment, ablation$Measurement, ablation$CellType)

. . . to see what this does. This composite factor is passed to the group aesthetic of geom_line() to
inform ggplot which data values go together.

We have also added a new binding to geom_point(). The shape of each point is determined by the
corresponding Measurement. Note that ggplot prefers six or fewer distinct shapes (i.e., there are no
more than six levels in the corresponding factor). You can, however, use more using a command
like. . .

scale_shape_manual(values = 1:11)

Here we specify the shapes we want to use, as well as jittering the points slightly so they no longer
sit directly on top of one another.

p <- ggplot(ablation, aes(x = Time, y = Score))

p + geom_point(aes(color = Experiment, shape = Measurement),

size = 4, position = position_dodge(0.5)) +

scale_shape_manual(values = c(1,16))

We’ll show you how to draw a plot listing all the possible shapes at the end of this section.

4. In the above example, we specified that the color of both points and lines should be determined by the
Experiment. It is therefore tidier to specify this binding once in the ggplot aesthetic. Any bindings
defined there are inherited by all layers (but can be overridden by any individual layer’s aesthetic).

p <- ggplot(ablation, aes(x = Time, y = Score, color = Experiment))

p <- p + geom_point(aes(shape = Measurement), size = 4)

p <- p + geom_line(aes(group = interaction(Experiment, Measurement, CellType),

linetype = CellType))

print(p)

5. Some layers don’t plot data, but a↵ect the plot in other ways. For example, there are layers that
control plot labels and plot theme (there are eight themes built-in to ggplot2 and many more available
at https://github.com/jrnold/ggthemes). The labs() function also modifies legend labels.

( p <- p + labs(title = "Ablation", x = "Time (minutes)", y = "% Saturation") )

( p <- p + theme_bw() + theme(plot.title = element_text(h = 0.5)))

6. ggplot gives you control over the scales of your plot. There is one scale for each binding. In the plot
we just made, there are five scales that we can manipulate: the x and y axes and the three legends.

Let’s change our x-axis to include the 5 minute timepoint. This is achieved with yet another layer.

p + scale_x_continuous(breaks = c(0, 5, 10, 20, 30))

p + scale_x_continuous(breaks = unique(ablation$Time))

Tip: In the second example above, we have computed the breaks from the data, rather than
listing them individually. This makes the code we are writing usable even when the data changes.
This is an essential strategy for reproducibly analyzing data at scale.

7. We can also manipulate legends with scale layers.
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p <- p + scale_shape_manual(values = c(1,16), labels = c("LDLR", "TfR")) +

scale_linetype_discrete(name = "Cell type") +

scale_color_manual(values = c("blue", "red", "green"))

Here we provide the labels for the Measurement scale (remember that we used an aesthetic to bind
shape to Measurement). Note that ggplot will always order the labels according to the levels of the
underlying factor, so the labels should be provided in that order. If you want to change the order in
which the legend elements are displayed, change the underlying factor.

We have also changed the title of the CellType legend (the linetype binding) to be two words and
used a di↵erent color palette (for the binding to Experiment).

8. You can use built-in color palettes from ColorBrewer (https://colorbrewer2.org/). To see all
available palettes:

library(RColorBrewer)

display.brewer.all()

and to use a ColorBrewer palette in your plot:

scale_color_brewer(palette = "Set1")

9. Note the general form of the scale layer functions:

scale_aestype_colortype

where the aestype is the bound aesthetic, and the colortype is the type of color associated with that
binding.

Common values for the aestype and colortype include:

Aestype
colour Color of lines and points

fill Color of area fills (e.g. bar graph)
linetype Solid/dashed/dotted lines
shape Shape of points
size Size of points

alpha Opacity
x,y x and y axes

Colortype
hue Equally-spaced colors from the color wheel

manual Manually-specified values (e.g., colors, point shapes, line types)
gradient Color gradients

grey Shades of grey
discrete Discrete values (e.g., colors, point shapes, line types, point sizes)

continuous Continuous values (e.g., alpha, colors, point sizes)

Table 1: Scale layer function components.

10. This plot is probably showing too much data at once. One approach to resolve this would be to make
separate plots for the LDLR and TfR measurements. You can make multiple plots at once using
facets. Here are a few options.

p + facet_grid(Measurement ~ .)

p + facet_grid(. ~ Measurement)

© 2014-2023 L. Skrabanek, J. Banfelder, Weill Cornell Medicine Page 25 of 38



VIII PLOTTING

p + facet_grid(Experiment ~ Measurement)

p + facet_grid(Measurement ~ Experiment)

In these plots, you can remove the color and shape legends entirely (an option that can be specified
in each of the respective legend layers). . .

p + facet_grid(Measurement ~ Experiment) +

scale_color_discrete(guide = "none") + scale_shape_discrete(guide = "none")

. . . or you may no longer want to bind the Measurement and Experiment variables to shape and color
at all.

Tip: The facet wrap() function in ggplot can be used to wrap a 1D ribbon of plots into a 2D
layout. You can also use the gridExtra package to place independently generated plots on the
same page.

11. When plotting many points, controlling opacity can be useful. Let’s model an ant-infested park.
(To create a reproducible data set, you can set the seed for the random number generator with the
set.seed() function).

trees <- data.frame(x = rnorm(100), y = rnorm(100),

size = rnorm(100, mean = 5, sd = 2))

ants <- data.frame(a = rnorm(10000, sd = 0.4, mean = 1),

b = rnorm(10000, sd = 0.2, mean = -1))

p1 <- ggplot() +

geom_point(data = ants, aes(x = a, y = b),

color = "brown", size = 2, alpha = 0.01) +

geom_point(data = trees, aes(x = x, y = y, size = size),

color = "green", shape = 8)

print(p1)

Note that here we are plotting points from two di↵erent data frames, so we don’t provide a default
dataset or default bindings to x or y in the ggplot() function. These can always be set (or overridden)
in individual layers.

Exercise:

a. Compare the result without specifying alpha.

12. ggplot can do statistical analyses on the fly. We won’t cover the details here, but here’s an example
to whet your appetite:

p2 <- ggplot() +

stat_density2d(data = ants, aes(x = a, y = b, fill= ..level.. ),

alpha = 0.5, geom = "polygon") +

geom_density2d(data = trees, aes(x = x, y = y)) +

geom_point(data = trees, aes(x = x, y = y, size = size),

color = "green", shape = 8) +

scale_fill_gradient(low = "white", high = "brown") +

scale_size_continuous(guide = "none")

# or scale_size_continuous(name = "Tree size")

print(p2)

Note the use of the binding to the ..level.. variable. This binds to a statistic (in this case, the 2D
density of points) computed by the stat_density2d() layer (computed variables are identified by
the appended and prepended “..”).
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13. You can ask R to produce your plots as PDF files rather than display them on the screen.

pdf(file = "figures.pdf", paper = "letter")

print(p)

print(p1)

print(p2)

dev.off()

Whenever a PDF device is open, all plotting (with ggplot or otherwise) will be to the PDF file, not
to the RStudio plot tab. So don’t forget that dev.off() command.

Note that you can also use RStudio to export individual plots as PDFs or PNGs from the Plot tab.

14. As promised above, here we show some code that prints a reference of all the 26 shapes that are
available. Note that several shapes can also have a fill aesthetic.

i <- 0:25; x <- i %/% 6; y <- i %% 6

df <- data.frame(name = i, row = x, column = y)

ggplot(df, aes(x = row, y = column)) +

geom_point(shape = 0:25, fill = "yellow", size = 4) +

geom_text(label = i, vjust = 2) +

scale_y_reverse() +

theme(axis.title.x=element_blank(), axis.text.x=element_blank(),

axis.ticks.x = element_blank(),

axis.title.y=element_blank(), axis.text.y=element_blank())

15. A great resource to check out is https://r-graph-gallery.com/, which showcases many di↵erent
types of graphs that can be made with various external packages. Note the ggplot2 section down at
the bottom. Also note that it gives you the code for all the example plots!
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IX Data wrangling

You may have noticed that the format of the ablation data frame is a bit peculiar. The Excel sheet you
imported for the plotting exercise is probably not what you are used to getting from your colleagues, or
working with yourself. It is, however, in the canonical format for storing and manipulating data that you
should be using.

The hallmark of this canonical (tidy) format is that there is only one (set of) independently observed
value(s) in each row. All of the other columns are identifying values. They explain what exactly was
measured. This is also known as metadata in some circles.

More specifically, a tidy dataset is defined as one where:

• Each variable forms a column.

• Each observation forms a row.

When your data is in this format, it is straightfoward to subset, transform, and aggregate it by any com-

bination of factors of the identifying variables. That is why, for example, the ggplot package essentially
requires that your data is in tidy format.

The tidyverse that Hadley Wickham has been instrumental in creating has this format at its core, and his
tidyr package includes functions to help coerce your data into this format. This section will also introduce
another tidyverse package called dplyr, which is used to perform more complex manipulations on your
data.

i. Going long

1. If you are given data in non-canonical format, you can use the gather() function to fix it. This will
convert a data frame with several measurement columns (i.e., “fat” or “wide”) into a “skinny” or
“long” data frame which has one row for every observed (measured) value. The gather() function
takes multiple columns that all have the same measurement type, and collapses them into key-value
pairs, duplicating all other columns as needed.

Let’s start with a “fat” data frame that contains data about mouse weights.

set.seed(1)

mouse_weights_sim <- data.frame(

time = seq(as.Date("2017/1/1"), by = "month", length.out = 12),

mickey = rnorm(12, 20, 1),

minnie = rnorm(12, 20, 2),

mighty = rnorm(12, 20, 4)

)

This dataset consists of only one type of measurement - mouse weights - where each column in this
dataset represents the weights of a given mouse over a year. The columns ‘mickey’, ‘minnie’ and
‘mighty’ are the names of each mouse, and each of the three columns contain weight data for that
mouse. The tidy version of this data would have all the weight measurements in one column (“values”)
with another column detailing which mouse (or column) that measurement came from (“keys”).

mouse_weights <- gather(data = mouse_sim_weights, # data frame to be manipulated

key = mouse, # name of the future column storing the mouse names

value = weight, # name of the future column storing the weight measurements

mickey, minnie, mighty) # all the columns that contain the values
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mouse_weights <- gather(data = mouse_weights_sim,

key = mouse, value = weight, -time)

mouse_weights <- gather(data = mouse_weights_sim,

key = mouse, value = weight, mickey:mighty)

After gathering our data, each variable forms a column. Our three variables are time, mouse, and
weight. Each row is now an observation. Before tidying our data, each row represented three observa-
tions. Note that the arguments to the key and value options become the names of the new columns.
Now that the data have been tidied, it is trivial to use as input to ggplot.

ggplot(mouse_weights, aes(x = mouse, y = weight)) +

geom_boxplot(aes(fill = mouse))

ggplot(mouse_weights, aes(x = time, y = weight)) +

geom_boxplot(aes(group = time))

ggplot(mouse_weights, aes(x = time, y = weight)) +

geom_boxplot(aes(group = time)) + geom_point(aes(color = mouse))

ggplot(mouse_weights, aes(x = time, y = weight)) +

geom_point(aes(color = mouse)) + geom_line(aes(group = mouse, color = mouse))

2. Although you can only use the gather() function to tidy data structures such as data frames, you
can always coerce other data structures into a format that can be used. For example, the USPerson-
alExpenditure dataset is a matrix, that we can coerce into a data frame, which can then be tidied as
above.

uspe_df <- as.data.frame(USPersonalExpenditure)

uspe_df$Category <- rownames(USPersonalExpenditure)

uspe <- gather(uspe_df, Year, Amount, -Category)

Once tidied, the data can again be readily plotted with ggplot. Here we’ll use stacked bar charts,
showing the expenditure per year, colored by Category.

ggplot(uspe, aes(x = Year, y = Amount)) +

geom_bar(stat = "identity", aes(fill = Category))

ggplot(uspe, aes(x = Year, y = Amount)) +

geom_bar(stat = "identity", aes(fill = Category)) +

theme(legend.justification = c(0,1), legend.position = c(0,1))

ggplot(uspe, aes(x = Year, y = Amount)) +

geom_bar(stat = "identity", position = "dodge", aes(fill = Category)) +

theme(legend.justification = c(0,1), legend.position = c(0,1))

By default, geom_bar() is set up to plot frequencies of categorical observations. Since we are plotting
numerical values, we need to use the stat = "identity" option. In the second example, we have
relocated the legend, and in the third, we demonstrated how we can draw the bars to be side-by-side,
rather than stacked.

ii. Going wide

1. The complement of the gather() function is the spread() function. We can reshape our mouse
weights to their original format.

spread(data = mouse_weights, key = mouse, value = weight)
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Similarly, we can reshape our ablation dataset into a dataframe where there is one row per time point
and one column per CellType.

spread(ablation, key = CellType, value = Score)

Note that all of the experimentally measured values in this table come from the original Score
column; this is indicated by the value option in the above command.

2. It is also possible to have columns that are combinations of identifiers, but you will need to include
an extra step of manually combining those columns first. Say we wanted a wide table where each of
the measurement columns showed the value for a specific combination of Experiment and CellType.
We would use another function from the tidyr package, unite().

abl_united <- unite(ablation, ExptCell, Experiment, CellType, sep = ".")

spread(abl_united, ExptCell, Score)

Here, ExptCell is the new column that we are defining, as a combination of Experiment and CellType,
where the names of the identifiers will be separated by a period.

3. Finally, the opposite of the unite() function is separate().

separate(abl_united, ExptCell, c("Expt", "Cell"), sep = "\\.")

Note that here, if the separator is a character string, it is interpreted as a regular expression, so we
have to escape out the period character. The separate() function can be used to split any single
column which captures multiple variables.

iii. Joining dataframes

1. It is usually a good idea to keep all of your data from a particular study or project in a very small
number of canonical “skinny” data frames. Consider the ablation data we’ve been using; when new
experiments are performed, you can add new rows to the ablation data frame with the rbind

function. If the data for the new experiment is given to you in “fat” format (say via a new Excel
workbook), you may need to gather() the new data first, and then rbind() it.

2. Sometimes, you will want to add new columns before doing this. For example, if all of the data thus
far was collected by one tech, you probably did not bother to store that metadata. However, if, after
some early success, your PI assigns another post-doc to the project, you may want to create a new
data frame with this information and store it in the project environment.

experiment_log <- data.frame(Experiment = c("E1909", "E1915", "E1921"),

Tech = c("Goneril", "Regan", "Cordelia"),

stringsAsFactors = TRUE)

str(experiment_log)

experiment_log

When looking for technician-specific bias, you will need to merge the technician data with your main
data. The dplyr package includes a number of functions to help with this.

inner_join(ablation, experiment_log)

The inner_join() function merges two data frames based on common column values. By default, it
looks for common column names, but these can be specified explicitly. The inner_join() function
keeps only rows which have elements common to both data frames (it is similar to a database table
inner join). You can force a left or right (or full) database-style join by using the left_join(),
right_join() and full_join() functions, respectively.
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The merged data frame contains redundant information; i.e., if you know the Experiment, you know
the Tech (we say the data is “denormalized”). While the merged data frame may be convenient when
investigating “tech e↵ects”, you probably don’t want to store this data frame permanently. This
becomes more important at scale, when the cost of storing the redundant information becomes a
limiting factor (usually in terms of the memory needed by R).

Tip: Use * join()! Don’t depend on vectors being aligned unless you are absolutely, positively
sure they are, and * join() is not an option. Such assumptions are a very, very common source
of errors in data analysis (not just in R – think about what you do when you paste a new column
into an Excel sheet).

3. To save your work, use R’s save() function. This will save it in an Rdata format, which can later be
reloaded with the load() function. In the example below, we save a single object to a file; you can
also pass a list of objects as the first argument to save the collection.

save(ablation, file = "ablation.Rdata")

load("ablation.Rdata")

iv. Subsetting with dplyr

The dplyr package has other functions to help you perform more complex manipulations, and a few others
that will make your life easier. These include subsetting by columns (select()) and subsetting by rows
(filter()). To some extent, these have the same functionality as indexing vectors, but especially as you
start to chain together multiple operations, the dplyr functions will make the intent and readability of
your code much clearer.

1. We can use select() to select columns. We’ll use a new dataset called msleep (which has data about
mammalian sleep cycles) to demonstrate. The select() command below is exactly equivalent to a
selection by column indexing vector.

head(select(msleep, name, sleep_total))

head(msleep[ , c("name", "sleep_total")])

2. Note that the data structure returned here looks a little di↵erent to what we are used to. The msleep
dataset is called a tibble, which is essentially a data frame, with some small di↵erences, which include
the way that it is presented. When you print a tibble to the console, it will only display as many
columns as will fit on the screen (while also listing the unseen columns at the bottom), displays the
first 6 rows, and also tells you what data type each column consists of. You can use it exactly as you
would a data frame, and functions that don’t know about tibbles will use it as if it were a data frame
(and in fact, it is).

class(msleep)

3. One of the paradigms in the tidyverse is readability of code, and a powerful tool that is introduced
for this is a “pipe”, or %>%. This is analogous to the pipe in Unix pipelines. The pipe will take the
output from whatever is on the left hand side, and treat it as the first argument to the function
on the right hand side. The %>% operator is loaded automatically once you load any of the dplyr
packages, but comes specifically from a package called magrittr.

msleep %>% select(name, sleep_total) %>% head

msleep %>%

select(name, sleep_total) %>%

head
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4. The select() function allows you to treat column names as their numeric position, so that anything
you can do with numeric positions, you can do with the variable names. It is always a better idea to
refer to variables by name, rather than position; it is much less error-prone, and you don’t have to
preserve order.

Note also that, just as in ggplot, when referring to variables, we never have to refer to the data
frame explicitly.

head(msleep[ , -1])

head(select(msleep, -name))

head(select(msleep, -c(name, sleep_total)))

msleep %>%

select(-c(name, sleep_total)) %>%

head

5. There are also a number of convenience functions that go along with select(). See help(select)

or the dplyr cheatsheet for a complete list of other helper functions.

msleep %>%

select(starts_with("sl")) %>%

head

head(msleep[ , startsWith(names(msleep), "sl")])

Exercise:

a. Select all columns that have “wt” in their names.

b. Select the name, genus and order variable columns.

6. The filter() function is used to select rows, similar to the row indexing vector.

msleep[msleep$sleep_total >= 16, ]

msleep %>%

filter(sleep_total >= 16)

msleep %>%

filter(order %in% c("Perissodactyla", "Primates"))

msleep[msleep$order %in% c("Perissodactyla", "Primates"), ]

7. By default, multiple arguments are chained together with logical AND.

msleep %>%

filter(sleep_total >= 16, bodywt >= 1)

msleep %>%

filter(sleep_total >= 16 & bodywt >= 1)

msleep[msleep$sleep_total >= 16 & msleep$bodywt >=1, ]

Exercise:

a. Select all the rows where the order is Carnivora or Primates.

b. Select all rows where sleep total is between 10 and 15.

c. Select all rows where the sleep total was more than 4 times as long as sleep rem.

d. How would you filter out all rows where brainwt was unknown?

8. Another useful function is arrange() which reorders rows by the values in one or more columns. The
desc() function reverses the direction of the ordering.
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msleep %>% arrange(order) %>% head

msleep %>%

arrange(desc(order)) %>%

head

msleep %>%

select(name, order, sleep_total) %>%

arrange(order, sleep_total) %>%

head

9. It is common to use a column solely to drive ordering, but without actually seeing it.

msleep %>%

arrange(order, sleep_total) %>%

select(name, order) %>%

head

Exercise:

a. Arrange the rows by bodyweight, from largest to smallest, showing only the name and bodywt

columns.

b. Arrange the rows by the length of non-rem sleep.

v. Summarizing data by groups

1. When we were using gather() and spread() earlier we were only rearranging (and optionally sub-
setting) the raw data. In other words, every value in the new data frame could be found in the original
data frame. The dplyr package has functions that allow us to summarize our data (this is also known
as data aggregation).

2. Let’s use a smaller dataset to explore these capabilities. The first function we look at is summarize().
This will run a summary function (like mean()) on a column and return the result in a new dataframe.

ToothGrowth %>%

summarize(meanLen = mean(len))

3. On its own, it will always return a data frame with a single row. This is not terribly useful, though!
We already know other ways of getting this information. Where this becomes extremely useful is in
combination with the group_by() function. This allows you to subset your dataset by a set of one
or more “grouping” variables, and run the summary functions per group.

ToothGrowth %>%

group_by(supp) %>%

summarize(meanLen = mean(len))

The group_by() function allows you to define your unit of interest, here the supplement, and evaluate
one or more expressions in the context of the group. Running the group_by() function on its own
will return the entire dataset, but rearranged into the required groupings. The resultant tibble knows
how many groups there are, and how many observations are in each.

4. You can use combinations of variables to subset your data into groups.

ToothGrowth %>%

group_by(supp, dose) %>%
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summarize(meanLen = mean(len), n = n())

Note that we included two summary functions here. The n() function returns the number of obser-
vations defined by the current grouping. It is generally a good idea to include this information, to
get a sense of how robust the description of that group is, and perhaps later filter by the minimum
number of observations.

You can use your own functions as arguments to the summarize() function, but at this time, you
are restricted to only returning a single value from the summarizing function. There are ways around
this, but they are outside the scope of this class.

5. The final dplyr tool is the mutate() function. Unlike summarize(), which results in a new data
frame, mutate() adds a new column to the input data frame, and computes a value for each row.
Like summarize(), mutate() can output multiple new columns.

ToothGrowth %>%

group_by(supp, dose) %>%

mutate(norm.len = (len - mean(len))/sd(len), max = max(len)) %>%

print(n = 60)

Here, mean() and sd() are computed on the lengths defined by each group, not the lengths of the
entire dataset.

Exercise:

a. Repeat the previous exercise with the msleep dataset, but this time, also add a new variable
with the length of non-REM sleep.

b. How would you check if the sleep total and awake columns for each organism added up to 24
hours?

6. Let’s use our new functions to further explore the ablation dataset. Some recap first:

Exercise:

a. Reshape the ablation dataset so that there is a column for each CellType, and removing the
Direction column.

b. Reshape the ablation dataset so that every unique combination of Time and CellType has its
own column. Again, remove the Direction column.

7. We can chain many operations together. What does this do?

ablation %>%

select(Time, Measurement, CellType, Score) %>%

group_by(Time, Measurement, CellType) %>%

summarize(mean_score = mean(Score)) %>%

spread(CellType, mean_score)

Note that the spread() function refers to a variable newly created by the function directly before.

8. Other examples of useful summary functions include min(), max().

ablation %>%

select(Time, Measurement, CellType, Score) %>%

group_by(Time, Measurement, CellType) %>%

summarize(min = min(Score), max = max(Score))
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9. We can compute the mean and standard deviation within groups too. If we assign these results to a
new data frame, we can use them as input to ggplot.

ablation_mean_sd <- ablation %>%

select(Time, Measurement, CellType, Score) %>%

group_by(Time, Measurement, CellType) %>%

summarize(mean = mean(Score), sd = sd(Score))

ggplot(ablation_mean_sd, aes(x = Time, y = mean)) +

geom_point(size = 4) +

geom_errorbar(aes(ymin = mean - sd, ymax = mean + sd), width = 0.4) +

facet_grid(Measurement ~ CellType) +

geom_line() +

geom_point(data = ablation, aes(y = Score), color = "pink", shape = 1) +

labs(title = "+/- 1 SD")

In the above plot, we used the geom_errorbar() function which requires a unique aesthetic that
binds ymax and ymin to the upper and lower bounds of the error bars.

10. Confidence intervals computed from a t-test are often used as the limits of the error bars, but including
those in a similar figure is a little less elegant, because the summarizing function currently cannot
return more than one value.

ablation_mean_ci <- ablation %>%

select(Time, Measurement, CellType, Score) %>%

group_by(Time, Measurement, CellType) %>%

summarize(mean = mean(Score),

lower_limit = t.test(Score)$conf.int[1],

upper_limit = t.test(Score)$conf.int[2])

11. Let’s use the mutate() function to add another column to our data frame, calculating the rate of
ablation. Note that at Time 0, the rate cannot be calculated and is therefore unknown.

ablation %>% mutate(rate = ifelse(Time > 0, Score / Time, NA))

Note the use of the ifelse() function. This is a vector operation that tests the expression given as
the first argument for every element in a vector. If the expression evaluates to TRUE, the second
argument is the result, otherwise the third one is. The mutate() function adds a column to the
ablation data frame with the computed result.

12. When coupled with group_by(), mutate() can compute a value for every line that is a function of
some grouping. In the following example, we use mutate() with group_by() to determine whether
a Score is an outlier within a group of experiments (here we define an outlier as being outside of ±1
SD of the mean.

ggplot(ablation_mean_sd, aes(x = Time, y = mean)) +

geom_point(size = 2) +

geom_errorbar(aes(ymin = mean - sd,

ymax = mean + sd), width = 0.4) +

facet_grid(Measurement ~ CellType) + geom_line() +

geom_point(data = ablation %>%

group_by(Measurement, CellType, Time) %>%

mutate(outlier = abs((Score - mean(Score)) / sd(Score)) > 1),

aes(y = Score, color = outlier), size = 4, shape = 1) +

labs(title = "+/- 1 SD", y = "Mean") +
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scale_colour_discrete(name = "Outlier Status",

labels = c("Within 1 SD", "Outside 1 SD"))

Here, the data argument to the second geom_point() function is an inline call to dplyr functions.
This is not recommended in practice, but is shown to give you an idea of what is possible. Also, note
that a more appropriate cuto↵ for outliers is ±3 SD.
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X Reproducible analysis

To facilitate reproducible analysis, it is a best practice to write a script that loads your raw data, runs your
entire analysis, and produces appropriate plots and output without any intervention. Keeping the script
open in the Source panel in RStudio and checking the Source on Save option can be helpful as you develop
your script.

An example based on the material we have covered in this workshop is shown below.

library(tidyverse) # using ggplot2, dplyr, tidyr packages

analyze.all <- function(save_plots = TRUE) {

# Load data

ablation <- read.csv(file = "Ablation.csv",

header = TRUE,

stringsAsFactors = TRUE)

names(ablation)[names(ablation) == "SCORE"] <- "Score"

print(ablation)

ablation_means <- ablation %>%

group_by(CellType, Measurement, Time) %>%

summarize(mean = mean(Score), n = n())

print(ablation_means)

# Set up plotting

if (save_plots) {

pdf(file = "plot.pdf")

}

# Plot all data

g <- ggplot(ablation, aes(x = Time, y = Score)) +

geom_point() +

geom_line(aes(color = Experiment)) +

facet_grid(Measurement ~ CellType) +

theme_bw()

print(g)

# Plot averages over experiments

g <- ggplot(ablation_means, aes(x = Time, y = mean)) +

geom_point() +

geom_line(aes(color = CellType)) +

facet_wrap(~ Measurement) +

theme_bw()

print(g)

# Separate plots of averages over experiments

for (measurement in levels(ablation.means$Measurement)) {

g <- ggplot(ablation_means %>%

filter(Measurement == measurement), aes(x = Time, y = mean)) +

geom_point() +
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geom_line(aes(color = CellType)) +

labs(title = measurement) +

theme_bw()

print(g)

}

# Close plotting device

if (save_plots) {

dev.off()

}

}

analyze.all(FALSE)

Note the use of for loops and if blocks. Control structures such as these are often needed to ensure your
script can run autonomously. Here we use an if block to control whether plots are saved to a PDF or
viewed in RStudio, a technique that can be handy when developing your script.

Also note that the script works when invoked with the appropriate working directory and with an empty
environment. It is important that you test this to ensure that you are not dependent on some objects left
in your workspace from interactive sessions.

We close by noting that some journals, such as PLoS One, are now requiring scripts such as these to address
the problem of imprecise or incomplete descriptions of analysis methods.
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