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Day 4 overview


•  exploring read counts

•  rlog transformation

•  hierarchical clustering

•  PCA


•  (brief) theoretical background for DE analysis

• DE analysis using DESeq2

•  exploring the results 


RStudio: please load the project we created last time!
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Expression units

•  strongly influenced by


•  gene length

•  sequencing depth 

•  expression of all other genes in the same sample


DESeq’s size factor 
normalization


hetero-
skedasticity


•  annoying mathematical properties of read counts

•  large dynamic range

•  discrete values


log transformation and 
variance stabilization 
(DESeq’s rlog() )


Use normalized and transformed expression 
units for exploratory analyses!




EXPLORATORY ANALYSES

assessing sample similarities & sources of variation




Exploratory analyses

•  do not test a null hypothesis!

• meant to familiarize yourself with the data at hand and to 

discover biases and unexpected variability


Typical exploratory analyses:



•  correlation of gene expression 

between different samples

•  (hierarchical) clustering

•  dimensionality reduction (e.g. 

PCA)

•  dot plots/box plots/violin plots of 

individual genes




Pairwise correlation of gene expression values


•  replicates of the same condition 
should show high correlations (> 0.9)


• Pearson method: metric differences 
between samples

•  influenced by outliers


• Spearman method: based on 
rankings

•  less sensitive

•  less driven by outliers


• R function: cor()



Clustering gene expression values
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How does gene expression clustering work?
Patrik D’haeseleer

Clustering is often one of the first steps in gene expression analysis. How do clustering algorithms work, which ones 
should we use and what can we expect from them?

Our ability to gather genome-wide expression 
data has far outstripped the ability of our puny 
human brains to process the raw data. We can 
distill the data down to a more comprehensible 
level by subdividing the genes into a smaller 
number of categories and then analyzing those. 
This is where clustering comes in.

The goal of clustering is to subdivide a set 
of items (in our case, genes) in such a way that 
similar items fall into the same cluster, whereas 
dissimilar items fall in different clusters. This 
brings up two questions: first, how do we 
decide what is similar; and second, how do we 
use this to cluster the items? The fact that these 
two questions can often be answered indepen-
dently contributes to the bewildering variety 
of clustering algorithms.

Gene expression clustering allows an open-
ended exploration of the data, without get-
ting lost among the thousands of individual 
genes. Beyond simple visualization, there are 
also some important computational applica-
tions for gene clusters. For example, Tavazoie 
et al.1 used clustering to identify cis-regulatory 
sequences in the promoters of tightly coex-
pressed genes. Gene expression clusters also 
tend to be significantly enriched for specific 
functional categories—which may be used to 
infer a functional role for unknown genes in 
the same cluster.

In this primer, I focus specifically on clus-
tering genes that show similar expression pat-
terns across a number of samples, rather than 
clustering the samples themselves (or both). I 
hope to leave you with some understanding 
of clustering in general and three of the more 
popular algorithms in particular. Where pos-

sible, I also attempt to provide some practical 
guidelines for applying cluster analysis to your 
own gene expression data sets.

A few important caveats
Before we dig into some of the methods in 
use for gene expression data, a few words of 

caution to the reader, practitioner or aspiring 
algorithm developer:

•  It is easy—and tempting—to invent yet 
another clustering algorithm. There are hun-
dreds of published clustering algorithms, 
dozens of which have been applied to gene 

Patrik D’haeseleer is in the Microbial Systems 
Division, Biosciences Directorate, Lawrence 
Livermore National Laboratory, PO Box 808,
L-448, Livermore, California 94551, USA.
e-mail: patrikd@llnl.gov
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Figure 1  A simple clustering example with 40 genes measured under two different conditions. 
(a) The data set contains four clusters of different sizes, shapes and numbers of genes. Left: each 
dot represents a gene, plotted against its expression value under the two experimental conditions. 
Euclidean distance, which corresponds to the straight-line distance between points in this graph, was 
used for clustering. Right: the standard red-green representation of the data and corresponding cluster 
identities. (b) Hierarchical clustering finds an entire hierarchy of clusters. The tree was cut at the level 
indicated to yield four clusters. Some of the superclusters and subclusters are illustrated on the left.
(c) k-means (with k = 4) partitions the space into four subspaces, depending on which of the four 
cluster centroids (stars) is closest. (d) SOM finds clusters, which are organized into a grid structure
(in this case a simple 2 × 2 grid).
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Experiment 2


single-sample (or single-gene) clusters 
are successively joined 

+  “unbiased” 
-  not very robust 

• Result: dendrogram

•  clustering obtained by cutting 

the dendrogram at the 
desired level


• Similarity measures

•  Euclidean

•  Pearson correlation


• Distance measures

•  Complete: largest distance

•  Average: average distance


Goal: partition the samples into homogeneous groups such that the within-
group similarities are large.


Figure from D’haeseleer P. Nat Biotechnol. 2005 Dec;23(12):1499-501. 10.1038/nbt1205-1499 !

R function: hclust()



PCA


http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf 

starting point: matrix with expression values per gene and sample, 

e.g. 7,100 genes x 10 samples


If we want to understand the main differences between 
SNF2 and WT samples, the most detailed view (with the 
most “dimensions”) would entail all 7,100 genes.



However, it is probably enough to focus on the genes that 
are actually different.

In fact, it’ll be even better if we could somehow identify 
entire groups of genes that capture the majority of the 
differences.



PCA does exactly that (“grouping genes”) using the 
correlation amongst each other.
 2 PCs (or more) x 10 samples




Principal component analysis

Goal: Reduce the dataset to fewer dimensions yet approx. preserve the 

distance between the individual samples


starting point: matrix with 
expression values per gene 

and sample, 

e.g. 7,100 genes x 10 

samples


7,100 principal components 
x 10 samples




•  vectors along which the 

variation between samples is 
maximal


•  PC1-3 usually sufficient to 
capture the major trends!


http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf 



DIFFERENTIAL GENE 
EXPRESSION

Identifying genes with statistically significant expression 
differences between samples of different conditions
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DE basics


1.  Estimate magnitude of DE 
taking into account 
differences in sequencing 
depth, technical, and 
biological read count 
variability.


2.  Estimate the significance of 
the difference accounting for 
performing thousands of 
tests.


1 test per gene!


Garber et al. (2011) Nature Methods, 8(6), 469–477. doi:10.1038/nmeth.1613


H0: no difference in the read 
distribution between two conditions


logFC


(adjusted)

p-value




Estimating the difference with regression models 
Example: Modeling normalized gene expression values using a linear model


6.67


9.78


b0 

b1  

both beta values are 
estimates!


(they’re spot-on because the data 
is so clear for this example and 

the model is so simple)


describing all normalized expression values of one example gene using a simple linear 
model of the following form:


Normalized expression values of snf2 (YOR290C)


SNF2 KO
 WT


b1 

Y  =  b0    +   b1  *  x   +   e 
genotype
intercept
 delta


expr. 
values


b0: intercept, i.e. average of the baseline group

b1: difference between baseline & non-reference

      group

x  : 0 if genotype == “SNF2”, 1 if genotype == “WT”


b0 b1 
mean of the expr. 
values (Y) for 
SNF2 KO (x=0)


mean of the 
expr. values 
(Y) for WT 

(x=1)




DE analysis: dealing with raw read counts

1.  Fitting a sophisticated model (not a basic linear model) 

to get a grip on the read counts (done per gene; 
includes normalization)

•  library size factor

•  dispersion estimate using information across multiple genes

•  assuming a neg. binomial distribution of read counts


count data does not 
follow a normal 

distribution


negative binomial (NB) model




DE analysis

1.  Fitting a sophisticated model to get a grip on the read 

counts (done per gene; includes normalization)


2.  Estimating coefficients of the model to obtain the 
difference between the estimated mean expression of 
the different groups (log2FC)


•  define the contrast of interest, e.g. ~ batchEffect + condition

•  always put the factor of interest last

•  order of the factor levels determines the direction of log2FC




DE analysis

1.  Fitting a sophisticated model to get a grip on the read 

counts (done per gene; includes normalization)


2.  Estimating coefficients of the model to obtain the 
difference between the estimated mean expression of 
the different groups (log2FC)


3.  Test whether the log2FC is “far away” from 0

•  log-likelihood test or Wald test are used by DESeq2

•  multiple hypothesis test correction




Modeling read counts and estimating the log2-
fold-change (DESeq2)


Di↵erential analysis of count data – the DESeq2 package 39

4 Theory behind DESeq2

4.1 The DESeq2 model

The DESeq2 model and all the steps taken in the software are described in detail in our pre-print [1], and we
include the formula and descriptions in this section as well. The di↵erential expression analysis in DESeq2 uses
a generalized linear model of the form:

Kij ⇠ NB(µij ,↵i)

µij = sjqij

log2(qij) = xj.�i

where counts Kij for gene i, sample j are modeled using a negative binomial distribution with fitted mean µij

and a gene-specific dispersion parameter ↵i. The fitted mean is composed of a sample-specific size factor sj4

and a parameter qij proportional to the expected true concentration of fragments for sample j. The coe�cients
�i give the log2 fold changes for gene i for each column of the model matrix X.

By default these log2 fold changes are the maximum a posteriori estimates after incorporating a zero-centered
Normal prior – in the software referrred to as a �-prior – hence DESeq2 provides “moderated” log2 fold change
estimates. Dispersions are estimated using expected mean values from the maximum likelihood estimate of
log2 fold changes, and optimizing the Cox-Reid adjusted profile likelihood, as first implemented for RNA-Seq
data in edgeR [7, 8]. The steps performed by the DESeq function are documented in its manual page; briefly,
they are:

1. estimation of size factors sj by estimateSizeFactors

2. estimation of dispersion ↵i by estimateDispersions

3. negative binomial GLM fitting for �i and Wald statistics by nbinomWaldTest

For access to all the values calculated during these steps, see Section 3.10

4.2 Changes compared to the DESeq package

The main changes in the package DESeq2 , compared to the (older) version DESeq, are as follows:

• SummarizedExperiment is used as the superclass for storage of input data, intermediate calculations and
results.

• Maximum a posteriori estimation of GLM coe�cients incorporating a zero-centered Normal prior with
variance estimated from data (equivalent to Tikhonov/ridge regularization). This adjustment has little
e↵ect on genes with high counts, yet it helps to moderate the otherwise large variance in log2 fold change
estimates for genes with low counts or highly variable counts.

• Maximum a posteriori estimation of dispersion replaces the sharingMode options fit-only or maximum
of the previous version of the package. This is similar to the dispersion estimation methods of DSS [9].

• All estimation and inference is based on the generalized linear model, which includes the two condition
case (previously the exact test was used).

• The Wald test for significance of GLM coe�cients is provided as the default inference method, with the
likelihood ratio test of the previous version still available.

4
The model can be generalized to use sample- and gene-dependent normalization factors, see Appendix 3.11.
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read counts for 
gene i and 
sample j 


fitted mean
 gene-specific dispersion 
parameter


(fitted towards the 
average dispersion)


moderated 
log-fold 

change for 
gene i


model 
matrix 
column for 
sample j


library size 
factor


expression 
value estimate


Let’s do this!


Once the coefficients are estimated, 
the significance tests need to test 
how far away from zero they are 

since zero would mean “no 
difference”.


H0: no difference in the read 
distribution between two conditions




From read counts to DE


average 
norm. 
count


standard error 
estimate for the 

logFC


DESeq2::DESeq(ds_object) 



Exploratory vs. DE analysis workflow

raw reads


NORMALIZATION




•  lib sizes

•  variance

•  log-

transformation




Exploratory vs. DE analysis workflow

raw reads


NORMALIZATION




•  lib sizes

•  variance

•  log-

transformation




DESeq2, edgeR

limma-voom


�Van den Berge, K. et al. (2019).

doi: 10.1146/annurev-

biodatasci-072018-021255


estimating magnitude of change


determining statistical 
significance of the difference


getting a handle 
on the variability


DESeq2 vs. edgeR vs. limma-voom




What next?

• Do your results make sense?

• Are the results robust?


•  do multiple tools agree on the majority of the genes?

•  are the fold changes strong enough to explain the phenotype you 

are seeing?

•  have other experiments yielded similar results?


• Downstream analyses: mostly exploratory


How to decide which tool(s) to use?

•  function/content of original publication


•  code maintained?

•  well documented?

•  used by others?


•  efficient?




RNACocktail tries to implement all (current!) 
best performers for various RNA-seq analyses


Sahraeian et al. (2017). Nat Comm, 8(1), 59. 
 https://bioinform.github.io/rnacocktail/  



WALK-IN CLINICS



@ WCM: 

Thursdays, 1:30 – 3 pm,

LC-504 (1300 York Ave)







@ MSKCC:

https://www.mskcc.org/
research-advantage/core-
facilities/bioinformatics


Where to get help and inspiration?

bioconductor.org/help/workflows


mailing lists/github issues of the 
individual tools


biostars.org


stackoverflow.com

seqanswers.com


abc.med.cornell.edu


supplemental material of publications based on HTS data


https://github.com/abcdbug/dbug 

F100Research Software Tool Articles

Periodic Table of Bioinformatics:  

http://elements.eaglegenomics.com/ 

Picardi: RNA Bioinformatics (2015) 
https://www.springer.com/us/book/9781493922901 



Everything’s connected…

Sample type & 

quality

•  Low input?

•  Degraded?


Sequencing 

•  Read length

•  PE vs. SR

•  Sequencing errors


Experimental design

•  Controls

•  No. of replicates

•  Randomization


Library preparation 

•  Poly-A enrichment vs. 

ribo minus

•  Strand information


Bioinformatics 

•  Aligner

•  Annotation

•  Normalization

•  DE analysis strategy


•  Expression quantification

•  Alternative splicing

•  De novo assembly needed

•  mRNAs, small RNAs

•  ….


Biological question



