
Differential gene expression
analysis using RNA-seq

Applied Bioinformatics Core, November 2019

https://abc.med.cornell.edu/

Friederike Dündar with Luce Skrabanek & Paul Zumbo

Day 3: Counting reads

1.  Storing aligned reads: SAM/BAM format

2.  QC of aligned reads

3.  counting reads and quantifying gene expression
across different samples

•  working with read counts

•  normalizing

•  transforming

4.  similarity assessments/exploratory analyses

•  hierarchical clustering

•  PCA

Recap week 1
 • We downloaded fastq.gz
files from the SRA via ENA
using wget

• We did QC of the raw reads
using FastQC (1x per
sample) and summarized
the results for the numerous
fastq files per sample it
using MultiQC

• We aligned the raw reads
using STAR (the genome
index that is necessary was
provided by us)

• We will do additional QC on
those BAM files

Raw reads

Aligned reads

FASTQC
Mapping
.fastq

.sam/.bam
Aligned reads

STAR
RSeQC,
QoRTs

QC recap

•  aligned reads QC

•  % (uniquely) aligned reads

•  % exonic vs. intronic/intergenic

•  gene diversity

•  gene body coverage

•  raw reads QC

•  adapter/primer/other contaminating and

over-represented sequences

•  sequencing quality

•  GC distributions

•  duplication levels

FastQC
(QoRTs)

geneBody_coverage.py

Ø  aligner’s log files
Ø  samtools flagstat

Ø  RSeQC
Ø  QoRTs

…
summarize with MultiQC!

Storing aligned reads: SAM/BAM

Storing aligned reads: SAM/BAM

3.3 Storing aligned reads: SAM/BAM file format

FLAG field The FLAG field encodes various pieces of information about the individual read, which is
particularly important for PE reads. It contains an integer that is generated from a sequence of Boolean bits
(0, 1). This way, answers to multiple binary (Yes/No) questions can be compactly stored as a series of bits,
where each of the single bits can be addressed and assigned separately.

Table 4 gives an overview of the di↵erent properties that can be encoded in the FLAG field. The developers of
the SAM format and samtools tend to use the hexadecimal encoding as a means to refer to the di↵erent bits
in their documentation. The value of the FLAG field in a given SAM file, however, will always be the decimal
representation of the sum of the underlying binary values (as shown in Table 3, row 2).

Table 4: The FLAG field of SAM files stores several information about the respective read alignment in one single
decimal number. The decimal number is the sum of all the answers to the Yes/No questions associated with each
binary bit. The hexadecimal representation is used to refer to the individual bits (questions).

Binary (Decimal) Hex Description

00000000001 (1) 0x1 Is the read paired?

00000000010 (2) 0x2 Are both reads in a pair mapped “properly” (i.e., in the correct
orientation with respect to one another)?

00000000100 (4) 0x4 Is the read itself unmapped?

00000001000 (8) 0x8 Is the mate read unmapped?

00000010000 (16) 0x10 Has the read been mapped to the reverse strand?

00000100000 (32) 0x20 Has the mate read been mapped to the reverse strand?

00001000000 (64) 0x40 Is the read the first read in a pair?

00010000000 (128) 0x80 Is the read the second read in a pair?

00100000000 (256) 0x100 Is the alignment not primary? (A read with split matches may have
multiple primary alignment records.)

01000000000 (512) 0x200 Does the read fail platform/vendor quality checks?

10000000000 (1024) 0x400 Is the read a PCR or optical duplicate?

A bit is set if the corresponding state is true. For example, if a read is paired, 0x1 will be set, returning the
decimal value of 1. Therefore, all FLAG values associated with paired reads must be uneven decimal numbers.
Conversely, if the 0x1 bit is unset (= read is not paired), no assumptions can be made about 0x2, 0x8, 0x20,
0x40 and 0x80.

In a run with single reads, the flags you will most commonly see are:

• 0: This read has been mapped to the forward strand. (None of the bit-wise flags have been set.)

• 4: The read is unmapped (0x4 is set).

• 16: The read is mapped to the reverse strand (0x10 is set).

(0x100, 0x200 and 0x400 are not used by most aligners, but could, in principle be set for single reads.)

Some common FLAG values that you may see in a PE experiment include:

c� 2015 Applied Bioinformatics Core | Weill Cornell Medical College Page 25 of 66

2nd field: binary FLAG

most common FLAGS for SR: 0; 4; 16
 https://broadinstitute.github.io/
picard/explain-flags.html

Storing aligned reads: SAM/BAM

3.3 Storing aligned reads: SAM/BAM file format

Figure 9: Image based on a figure from Li et al. (2009).

c� 2015 Applied Bioinformatics Core | Weill Cornell Medical College Page 27 of 66

6th field: CIGAR string – which hoops did the aligner have to jump through to align
the read to the genome locus that it thought was the best fit?

M

alignment (match or mismatch!!)

I (N)
insertion (large insertions)

D

deletion

S/H

clipping

spliced out introns = sequences are missing in
the read, i.e., they need to be inserted in order to
align the read to the genome

re
ad

s

5M13N5M

Storing aligned reads: SAM/BAM

3 Read Alignment

OPT field(s) Following the elven mandatory SAM file fields, the optional fields are presented as key-value
pairs in the format of <TAG>:<TYPE>:<VALUE>, where TYPE is one of:

A Character
i Integer
f Float number
Z String
H Hex string

The information stored in these optional fields will vary widely depending on the mapper and new tags can
be added freely. In addition, reads within the same SAM file may have di↵erent numbers of optional fields,
depending on the program that generated the SAM file. Commonly used optional tags include:

AS:i Alignment score
BC:Z Barcode sequence
HI:i Query is i -th hit stored in the file
NH:i Number of reported alignments for the query sequence
NM:i Edit distance of the query to the reference
MD:Z String that contains the exact positions of mismatches (should complement the CIGAR string)
RG:Z Read group (should match the entry after ID if @RG is present in the header.

Thus, for example, we can use the NM:i:0 tag to select only those reads which map perfectly to the reference
(i.e., have no mismatches).

While the optional fields listed above are fairly standardized, tags that begin with X, Y, and Z are reserved
for particularly free usage and will never be part of the o�cial SAM file format specifications. XS, for exam-
ple, is used by TopHat to encode the strand information (e.g., XS:A:+) while Bowtie2 and BWA use XS:i:
for reads with multiple alignments to store the alignment score for the next-best-scoring alignment (e.g.,
XS:i:30).

3.3.3 Manipulating SAM/BAM files

As indicated above, samtools is a powerful suite of tools designed to interact with SAM and BAM files (Li
et al., 2009).⌥ ⌅
1 # return a peek into a SAM or BAM file (note that a SAM file can also easily be

inspected using the basic UNIX commands for any text file , such as cat ,
head , less etc.)

2 $ samtools view InFile.bam | head
3

4 # turn a BAM file into the human -readable SAM format (including the header)
5 $ samtools view -h InFile.bam > InFile.sam
6

7 # compress a SAM file into BAM format (-Sb is equivalent to -S -b)
8 $ samtools view -Sb InFile.sam > OutFile.bam
9

10 # generate an index for a BAM file (needed for many downstream tools)
11 $ samtools index InFile.bam⌃ ⇧
To see all the operations that can be done using samtools, type samtools --help.

The myriad information stored within the alignment files allow you to focus on virtually any subset of read
alignments that you may be interested in. samtools view has many options that directly interpret some of
the mandatory fields of its alignment section (Table 3), such as the mapping quality, the location and the
FLAG field values.⌥ ⌅
1 # get only unmapped reads
2 $ samtools view -h \ # show header
3 -b \ # output a BAM file
4 -f 4 \ # include only reads where the 0x4 bit is set
5 Aligned.sortedByCoord.out.bam > unmapped_reads.bam

c� 2015 Applied Bioinformatics Core | Weill Cornell Medical College Page 28 of 66

after 11th field: OPTIONAL information

<TAG>:<TYPE>:<VALUE>

tags are not standardized!

QC of aligned reads

•  How many reads aligned?

Ø aligner output (e.g., Log.final.out, STAR’s log file)

•  How well did the reads align?

Ø samtools flagstat, RSeQC’s bam_stat
Ø these provide summaries of the FLAG field values

•  Did we capture mostly exonic RNA?

Ø RSeQC’s read_distribution.py, QoRTS

•  Do we see a pronounced 3’/5’ bias?

Ø RSeQC’s geneBody_coverage.py, QoRTS

 visual
inspection!

(almost) all of these results can be
summarized using MultiQC!

à Section 3.4.1 of the course notes
https://github.com/friedue/course_RNA-seq2019/blob/master/Day02/b_code_alignmentQC.md

Typical biases of RNA-seq

•  lack of gene diversity:

•  dominance of rRNAs, tRNAs or other
highly abundant transcripts

•  read distribution

•  high intron coverage: incomplete

poly(A) enrichment

•  many intergenic reads: gDNA

contamination

•  gene body coverage

•  3’ bias: RNA degradation + poly(A)

enrichment

cu

m
ul

at
ive

 %
 o

f t
ot

al
 re

ad
s

exons
 introns

%
 C

ov
er

ag
e

Gene Body Percentile (5’ à 3’)

QoRTs

RSeQC

Different protocols have different gene body
coverage bias

Lahens et al. (2014) Genome Biology 15:R86

RSeQC
geneBody_coverage.py

2 popular post-alignment QC packages

•  commands are not well
standardized

•  output is not standardized
either (text, R scripts, PDF)

•  most results can be
integrated with the help of
MultiQC

•  see Table 11 of the course
notes for a list of relevant
RSeQC scripts (mostly:
read_distribution and
geneBody_coverage.py)

•  less clunky than RSeQC

•  offers many checks that are

already part of FastQC

•  stratifies genes by expression

strength for many checks

•  gene diversity plot is very

useful!

•  can bundle numerous

samples into one PDF, but
may run for a long (!) time

•  output is not easily integrated
with MultiQC

RSeQC
 QoRTs

http://rseqc.sourceforge.net/ https://hartleys.github.io/QoRTs/

Integrative Genomics Viewer

http://software.broadinstitute.org/software/igv/download

for the visual
inspection of

BAM files!

Integrative Genomics Viewer

•  load BAM file(s) from your computer (“File”)

•  take a snapshot of the reads around gene YPL198W

starting with
IGV 2.3,

Sashimi plots
can easily be

created

http://software.broadinstitute.org/software/igv/Sashimi

many options!

Katz (2015). Bioinformatics. doi:10.1093/bioinformatics/btv034

Summary

•  aligning unspliced reads is not too difficult, but it still takes a long time

(depending on the size of the genome)

•  spliced reads are quite tricky, and identifying novel splice junctions is error-
prone and far from being solved

•  the file format for storing aligned reads (SAM/BAM) is fairly standardized,
but the optional fields (and how alignment tools interpret some of the
mandatory entries) leave lots of room for variability

•  the file format(s) for storing genome annotation (e.g. genes, transcripts)
tend to be even stricter defined and even less well followed (aka it’s a
mess!)

•  historically, samtools are the most widely used tools when it comes to
exploring and manipulating SAM/BAM files (although there are alternatives,
e.g. bamtools)

•  QC of aligned read files is at least as important as QC of the raw
reads, if not more so!

removing rRNAs

•  sortMeRNA: http://bioinfo.lifl.fr/RNA/sortmerna/

•  input: reads in fastq file + rRNA sequences

•  will extract those reads that do not match to the rRNA

sequences

•  https://www.ncbi.nlm.nih.gov/nuccore/U13369 (human rRNA),

https://www.ncbi.nlm.nih.gov/nuccore/BK000964 (mouse)

•  make a “genome” index for rRNAs only (and perhaps
tRNAs), then align your reads and only use those that
do not map for the next round of alignment

•  do your alignment and counting as is, simply ignore the

rRNA genes in your subsequent downstream analysis

Can be done at virtually every step of the analysis. Choose the version that makes
most sense to you.

raw reads
filtering

alignment-based
filtering

ignoring
information about

some RNA classes

COUNTING READS

from alignments to count tables

Images

Raw reads

Aligned reads

Read count table

Normalized read count table

List of fold changes & statistical values

Downstream analyses on DE genes

Base calling & demultiplexing

Mapping

.tif

.fastq

Bioinformatics workflow of RNA-seq analysis

.sam/.bam

Bustard/RTA/OLB, CASAVA

STAR

Counting

featureCounts

Which
regions are
expressed?

How much
are they

expressed?

Quantifying expression

Disclaimer:

There are 2 (maybe 3) schools of thought when it comes to how expression values
should be generated. We currently present the one that’s based on the raw reads and
gene overlaps. See the course notes for references for the other strategies’ arguments.

genes != transcripts

�Van den Berge, K. et al. (2019). doi: 10.1146/annurev-biodatasci-072018-021255

at the saturated sensitivity and precision values (Table 2). These
sets are obtained when mean coverage is equal to 100 and com-
prise the best reconstruction achievable using these methods
with standard parameter settings.

For these transcript sets, the correlation between true and
estimated expression values of TP transcripts for Cufflinks is 0.95
and for Oases is 0.85 (Table 2). A lower correlation for the de novo
set is expected, given that the corresponding transcript set con-
tains more non-existent transcripts, which absorb some of the
true expression signal. The correlation for Cufflinks is compar-
able with that of some of the simulated curated annotation sets.

The FP=TP ratio is significantly higher for computational
methods than for reference-based methods using annotations
with similar accuracy. This is because FP transcripts that are re-
constructed from the data are necessarily supported by reads,
and thus have expression signal assigned to them, whereas se-
quence in FP transcripts in a curated annotation set will in gen-
eral not coincide with read sequence in the data, and so will be
assigned low expression values. Cufflinks appears worse in this
respect, as on average it assigns the equivalent of 81% of mean
TP expression to FP transcripts, while for Oases this value is
only 41% (Table 2). This is consistent with Cufflinks assembling
fewer incorrect transcripts than Oases, which concentrates the
signal in a smaller number of FP transcripts.

The correlation of TP transcripts reconstructed by Cufflinks
is high relative to the low sensitivity (s¼ 0.36) of the method. As
the more highly expressed transcripts are more likely to be re-
constructed accurately (Figure 6) than the more lowly expressed
transcripts and as highly expressed transcripts are easier to es-
timate accurately (on the logarithmic scale), the result is a high
correlation for a small subset of the truly expressed transcripts.

We note that the sampling of TP annotated transcripts in
our simulations does not depend on the expression level,
which is favourable towards reconstruction methods. As we
have shown (Figure 2), the annotated fraction of truly expressed
transcripts tends to be more highly expressed than the unanno-
tated fraction. Thus, the TP correlations for the annotation-
based approach are conservative.

Transcriptome reference-guided reconstruction
provides modest improvements in accuracy of
expression estimates

The CufflinksþRABT approach supplements a curated annota-
tion transcript set with additional reconstructed transcripts
required to explain the data. In our simulation set-up, we con-
sider the range of annotation sets with different sensitivities
and precisions, as above. We present two aspects of the results:
firstly the effect that RABT has on the sensitivity and precision
of the final transcript set, and secondly the correlation between
true and estimated expression of the TP transcripts and the
overall FP=TP ratio.

Supplementing annotated transcripts with reconstructed
transcripts using CufflinksþRABT generally increases sensitiv-
ity (the starts and ends of the arrows in Figure 7 point to the
annotated and supplemented sensitivities and precisions, re-
spectively). When using annotations with the lowest sensitivity
of s¼ 0.2, RABT roughly doubles sensitivity of the transcript set.
The gains in sensitivity decrease substantially as the sensitivity
of the annotations increases and are not noticeable beyond
s¼ 0.6. Thus, CufflinksþRABT is no better than an annotation-
based approach overall when the sensitivity of annotations is
moderate to high.

Table 2. Performance of the computational transcriptome recon-
struction methods

Cufflinks Oases

Sensitivity 0.36 0.36
Precision 0.45 0.17
Correlation of TPs 0.95 0.85
FP=TP 0.81 0.41

Sensitivity, precision, correlation between true and estimated expression of TP tran-
scripts and FP=TP for the computational transcriptome reconstruction methods.

Figure 6. Estimated expression levels of reconstructed transcripts by Cufflinks.
Densities of the log expression estimates of transcripts properly reconstructed and
incorrectly reconstructed by Cufflinks (p ¼ 2:17# 10$6, Kolmogorov–Smirnov test).

Figure 7. Log expression estimates for FP transcripts obtained using RABT.
Densities of the log expression estimates of FP transcripts reconstructed by
RABT and FP transcripts present in the simulated annotation set used by RABT
as a starting point (s ¼ 0.6, p¼0.4).

A comparative study of RNA-seq analysis strategies | 7

 at C
ornell U

niversity Library on July 9, 2015
http://bib.oxfordjournals.org/

D
ow

nloaded from

•  Transcriptome reconstruction
suffers from bad precision and
bad sensitivity => many FP
transcripts (esp. for tricky
transcriptomes)!

•  False transcripts capture a
considerable portion of the reads

Janes et al. (2015). Briefings in Bioinformatics, (January), 1–9. doi:10.1093/bib/bbv007

Please don’t rely on transcriptome
reconstruction unless you really need to

instead of transcript reconstruction, perhaps resort to either one of these alternatives:

•  transcript quantification with pseudo-alignments à kallisto, salmon

•  exon counts à DEXSeq

•  focus on specific splice events à MISO

This includes Cufflinks!

incorrect

correct

sensitivity
saturates
around .35

http://www-huber.embl.de/users/anders/HTSeq/doc/count.html#count

Counting read–gene overlaps

featureCounts will use read-gene overlaps
as small as 1 bp

multi-overlap reads will be discarded

Let’s count some reads & read
the results into R!

Please save the .RData and

the commands!

NORMALIZING READ
COUNTS

from counts to expression value estimates

From counting reads to expression units

7.1 Additional tables

Table 12: Normalization methods for the comparison of gene read counts within the same sample.

Name Details Comment

RPKM (reads
per kilobase of
exons per
million mapped
reads)

1. For each gene, count the number of reads mapping
to it.

2. Divide that count by: the length of the gene in
base pairs divided by 1,000 multiplied by the total
number of mapped reads divided by 106.

RPKMi =
Xi

(
li
103

)(
N

106
)

• introduces a bias in
the per-gene
variances, in
particular for lowly
expressed genes
(Oshlack and
Wakefield, 2009)

• implemented in
edgeR’s rpkm()
function

FPKM
(fragments per
kilobase...)

1. Same as RPKM, but for paired-end reads:
2. The number of fragments (defined by two reads

each) is used.

• implemented in
DESeq2’s fpkm()
function

TPM Instead of normalizing to the total library size, TPM
represents the abundance of an individual gene i in re-
lation to the abundances of the other transcripts (e.g.,
j) in the sample.

1. For each gene, count the number of reads map-
ping to it and divide by its length in base pairs (=
counts per base).

2. Multiply that value by 1 divided by the sum of all
counts per base of every gene.

3. Multiply that number by 106.

TPMi =
Xi

li
⇤

1

P
j

Xj

lk

⇤ 106

• details in Wagner
et al. (2012)

c� 2015-2016 Applied Bioinformatics Core | Weill Cornell Medical College Page 65 of 71

•  Raw counts: number of reads (or fragments)
overlapping with the union of exons of a gene

strongly influenced by:

•  gene length

•  transcript sequence (% GC)

•  sequencing depth

•  expression of all other genes

in the same sample

raw counts != expression strength

may cause variations for
different genes
expressed at the same
level

may cause variations for
the same gene in
different samples

Influences on read count numbers 
Sequencing depth, i.e. total number of reads/sample

seq. depth of Sample A >> Sample B automatically leads to larger counts for the
genes of Sample A even if the expression levels are the same

illustrations from https://github.com/hbctraining/DGE_workshop

deeply sequenced sample
 shallowly sequenced sample

Influences on read count numbers 
Gene lengths (and GC bias)

Gene X and Gene Y are
expressed at the same
levels, but the number of
reads that originate off of

their transcripts varies
because they are of

different lengths

Influences on read count numbers 
RNA pool composition/library diversity

one (or more) very abundant
transcript makes up a significant

portion of all reads

à dynamic range for the remaining

transcripts is limited

in the absence of that abundant
transcript (“read sponge”), the

remaining transcripts’ expression
differences have a greater chance

of being detected

the reads assigned to individual genes depend on the number of reads that are
allocated to all other transcripts in the same sample

Influences of read count numbers 
Summary

•  gene length

•  transcript

sequence (% GC)

•  sequencing depth

•  expression of all other

genes within the same
sample

need to be corrected
when comparing
different genes

need to be corrected when
comparing the same gene
across different samples

GENE-SPECIFIC
 SAMPLE-SPECIFIC

Different expression units you will hear about

7.1 Additional tables

Table 12: Normalization methods for the comparison of gene read counts within the same sample.

Name Details Comment

RPKM (reads
per kilobase of
exons per
million mapped
reads)

1. For each gene, count the number of reads mapping
to it.

2. Divide that count by: the length of the gene in
base pairs divided by 1,000 multiplied by the total
number of mapped reads divided by 106.

RPKMi =
read count of gene i

(
length of gene i

103
)(
library size

106
)

• introduces a bias in
the per-gene
variances, in
particular for lowly
expressed genes
(Oshlack and
Wakefield, 2009)

• implemented in
edgeR’s rpkm()
function

FPKM
(fragments per
kilobase...)

1. Same as RPKM, but for paired-end reads:
2. The number of fragments (defined by two reads

each) is used.

• implemented in
DESeq2’s fpkm()
function

TPM Instead of normalizing to the total library size, TPM
represents the abundance of an individual gene i in re-
lation to the abundances of the other transcripts (e.g.,
j) in the sample.

1. For each gene, count the number of reads map-
ping to it and divide by its length in base pairs (=
counts per base).

2. Multiply that value by 1 divided by the sum of all
counts per base of every gene.

3. Multiply that number by 106.

TPMi =
Xi

li
⇤

1

P
j

Xj

lk

⇤ 106

• details in Wagner
et al. (2012)

c� 2015-2016 Applied Bioinformatics Core | Weill Cornell Medical College Page 65 of 71

7.1 Additional tables

Table 12: Normalization methods for the comparison of gene read counts within the same sample.

Name Details Comment

RPKM (reads
per kilobase of
exons per
million mapped
reads)

1. For each gene, count the number of reads mapping
to it.

2. Divide that count by: the length of the gene in
base pairs divided by 1,000 multiplied by the total
number of mapped reads divided by 106.

RPKMi =
Xi

(
li
103

)(
N

106
)

• introduces a bias in
the per-gene
variances, in
particular for lowly
expressed genes
(Oshlack and
Wakefield, 2009)

• implemented in
edgeR’s rpkm()
function

FPKM
(fragments per
kilobase...)

1. Same as RPKM, but for paired-end reads:
2. The number of fragments (defined by two reads

each) is used.

• implemented in
DESeq2’s fpkm()
function

TPM Instead of normalizing to the total library size, TPM
represents the abundance of an individual gene i in re-
lation to the abundances of the other transcripts (e.g.,
j) in the sample.

1. For each gene, count the number of reads map-
ping to it and divide by its length in base pairs (=
counts per base).

2. Multiply that value by 1 divided by the sum of all
counts per base of every gene.

3. Multiply that number by 106.

TPMi =
Xi

li
⇤

1

P
j

Xj

lk

⇤ 106

• details in Wagner
et al. (2012)

c� 2015-2016 Applied Bioinformatics Core | Weill Cornell Medical College Page 65 of 71

7.1 Additional tables

Table 12: Normalization methods for the comparison of gene read counts within the same sample.

Name Details Comment

RPKM (reads
per kilobase of
exons per
million mapped
reads)

1. For each gene, count the number of reads mapping
to it.

2. Divide that count by: the length of the gene in
base pairs divided by 1,000 multiplied by the total
number of mapped reads divided by 106.

RPKMi =
Xi

(
li
103

)(
N

106
)

• introduces a bias in
the per-gene
variances, in
particular for lowly
expressed genes
(Oshlack and
Wakefield, 2009)

• implemented in
edgeR’s rpkm()
function

FPKM
(fragments per
kilobase...)

1. Same as RPKM, but for paired-end reads:
2. The number of fragments (defined by two reads

each) is used.

• implemented in
DESeq2’s fpkm()
function

TPM Instead of normalizing to the total library size, TPM
represents the abundance of an individual gene i in re-
lation to the abundances of the other transcripts (e.g.,
j) in the sample.

1. For each gene, count the number of reads map-
ping to it and divide by its length in base pairs (=
counts per base).

2. Multiply that value by 1 divided by the sum of all
counts per base of every gene.

3. Multiply that number by 106.

TPMi =
Xi

li
⇤

1

P
j

Xj

lk

⇤ 106

• details in Wagner
et al. (2012)

c� 2015-2016 Applied Bioinformatics Core | Weill Cornell Medical College Page 65 of 71

•  Raw counts: number of reads/
fragments overlapping with the union of
exons of a gene

•  [RF]PKM: Reads/Fragments per
Kilobase of gene per Million reads
mapped

•  TPM: Transcripts Per Million

•  rlog: log2-transformed count data
normalized for small counts and library
size (DESeq2)

gene read
counts per bp

all gene
counts over
all gene bp

gene length
 seq. depth

Avoid [RF]PKM and
total read count
normalization for

DGE!

FP rates for varying % of DE genes (0-30%)

Dillies et al.(2012). Briefings in Bioinformatics. doi:10.1093/bib/bbs046

Effects of normalization methods on FC calculation
and DGE analysis

if you need normalized
expression values, use
TPM or DESeq’s rlog

rlog values of DESeq2

• Normalization for differences in sequencing depth &

sample composition

•  median of the ratios of the j-th sample's counts to those of the

mean expression of each gene across all samples

•  variance-stabilization to alleviate the heteroskedasticity
of the normalized read counts

•  log2-transformation to compact the range and bring it
closer to normally distributed values

The rlog values are good (but far from perfect!) proxies of the “real”
expression strength of a given gene across different samples.

These are the values that you should use for exploratory analyses

and visualizations!

Let’s normalize (+ variance
stabilize + transform) some

reads & explore in R!

Please save the .RData and
the commands!

