Day 2: Identifying the transcripts that were
seguenced

1. Experimental Design
2. FastQC results
3. Reference genome & transcript annotation

4. Alignment

- STAR

- BAM/SAM files

5. QC of alignment step



EXPERIMENTAL DESIGN



Why do we need replicates?

Goal: Identify differences in expression for every gene.

...and “differences” should preferably be due to our experiment, not noise!

“Samples are our windows to the
population, and their statistics are

testdat <- data.frame(exprs = rnorm(200),

used to estimate those of the condition - S}g"wgn i;h:l)n--),
population.” gene_name = "Rando
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Invest in replicates!

- recommended: 6 biological replicates per condition for
DGE of strongly changing genes (logFC >= 2) [based on

insights from the fairly simple yeast transcriptome]
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Gierlinski et al. (2015). Bioinformatics, 31(22), 3625-3630. & Schurch et al. (2016) RNA.



Replicate types

\
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Batch effects can happen everywhere
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“Overall, our results indicate that there is “Once we accounted for the batch
considerable RNA expression diversity effect (...), the comparative gene
between humans and mice, well beyond expression data no longer clustered by
what was described previously, likely species, and instead, we observed a
reflecting the fundamental physiological clear tendency for clustering by
differences between these two organisms. “ tissue.”

Lin, Lin, and Snyder (2014). PNAS 111:48 Gilad & Mizrahi-Man (2015). F1000Research 4:121



ENCODE’s* study design was not optimal

Most human samples were sequenced separately from the mouse

samples:

D87PMIN1 D87PMIN1 D4LHBFN1 MONK

(run 253, (run 253, (run 276, (run 312,
flow cell flow cell flow cell flow cell
D2GUAACXX, D2GUAACXX , C2HKIJACXX , C2GR3ACXX,
lane 7) lane 8) lane 4) lane 6)
heart adipose adipose heart
kidney adrenal adrenal kidney

liver sigmoid colon sigmoid colon liver

small bowel lung lung small bowel
spleen ovary ovary testis

testis pancreas

HWI-ST373
(run 375,

flow cell
C3172ACXX,
lane 7)

brain
pancreas

brain

spleen
® Human
® Mouse

not all variables can be controlled for

mouse data: 10-week-old littermates

human data: deceased organ donors o))

and that’s ok, but you’ve
got to be mindful of these
limitations when making

Many tissues were not
sex-matched

Tissue
adipose
adrenal
brain
heart
kidney
liver
lung
ovary
pancreas EMALE
sigmoid colo MALE
small bowel FE
cpleen  EERTAIERES
testis

Mouse

Human

MALE
MALE

MALE

bold claims

A very good read (including the reviews and comments) that discusses many
scientific as well as ethical issues: https://f1000research.com/articles/4-121/v1

* not just ENCODE: see e.g. Leek et al. (2010) Nat Rev Gen 11(10) 733-739 or Jaffe & Irizarry (2014) Genome Biol 15(R31) 1-9




Avoiding bias

Completely randomized design
STRESS ABAABABAABBB

DET 121221122121

Restricted randomized design

GENOTYPE AAAAAABBBBBBE
DIET 121221121122

Blocked & randomized design
GENOTYPE AABBAABBAABB
DIET 121212121212
WEIGHT e e e+ 00000000

Block what you can,
randomize what you cannot.

What factors are of interest? \Which ones might introduce noise?
Which nuisance factors do you absolutely need to account for?

Krzywinski & Altman (2014) Nature Methods 11(7)




Typical RNA-seg
set-up

+ keep the technical nuisance
factors (harvest date, RNA
extraction Kit, sequencing
date...) to a minimum

« cover only as much of the
biological variation as
needed (but keep possible
limitations for the final
conclusions in mind)

* Treatment A

* Biological replicate

* RNA extraction

* Bar-code and pool

"

Lane 1 Lane2 Lane 3 Lane4 Lane5 Laneb

* Preparation for sequencing

» Sequence technical replicates

Make sure the sequencing
core multiplexes all samples!




How deep is deep enough?

for DGE (logFC~ 2) in mammals:

20 - 50 mio SR, 75 bp

Goals that require more, longer, and possibly paired-
end reads:

- quantification of lowly expressed genes

- identification of genes with small changes between conditions
- investigation of alternative splicing/isoform quantification

- identification of novel transcripts, chimeric transcripts

- de novo transcriptome assembly

Remember: The addition of replicate samples provides substantially greater
detection power of DE than increased sequence depth. (Rapaport et al., 2013)

https://www.encodeproject.org/ https://doi.org/10.1186/gb-2013-14-9-r95



Summary

RNA-seq analysis is not a completely solved issue — but
DE analysis on a gene level is decently mature and the
field seems to gravitate towards some sort of standard

no analysis tool can enforce (or replace!) common sense
and knowledge about the biology behind the experiment

crap in, crap out

more replicates are often better investments than more
reads



QUALITY CONTROL OF
RAW READS



1. find out which RunAccession numbers belong to the WT and SNF2 samples of BiolRep #1
awk '$4 == 1 {print $0}' ERP004763 sample mapping.tsv
2. download individual sample
awk -F "\t" '$5 == "ERR458493" {print $11}' samples-overview.txt | xargs wget

3. either do this 6 more times individually or write a for-loop

for i in “seq 3 9°

do

SAMPLE=ERR45849% {i}

egrep ${SAMPLE} samples at ENA.txt | cut -f11 | xargs wget
done

4. for-loop for SNF2 samples

for i in “seq 0 6°
do

SAMPLE=ERR45850$ {i}

egrep ${SAMPLE} samples_at ENA.txt | cut -fll1 | xargs wget
done

5. sort reads into folders

mkdir raw_reads

mkdir WT 1

mkdir SNF2_1

mv ERR45849*gz WT 1/
mv ERR4585*gz SNF2_1/

wv »n »n v v



FastQC & MultiQC

randomly selected 8 biological replicates for each condition (WT, SNF2)

mkdir raw_reads_QC/fastqc_results

for GENOTYPE in WT SNF2
do
for 1t in 1256 13 21 25 28
do
echo Running FastQC for: ${GENOTYPE} Sample No ${i}

mkdir raw_reads_QC/fastqc_results/${GENOTYPE}_ ${i}
~/mat/software/FastQC/fastqc ~/precomputed/rawReads_yeast_Gierlinski/${GENOTYPE}_${i}/*stq.gz \
-0 raw_reads_QC/fastqc_results/${GENOTYPE}_${1} -q
done

done

cd raw_reads_QC/fastqc_results/

~/mat/software/anaconda2/bin/multiqc . --dirs --interactive

http://chagall.med.cornell.edu/RNASEQcourse/multigc_report.html




Two basic questions of QC

How successful was the actual sequencing?

consistently high base call confidence

Did our library pep generate a faithful representation of
the DNA/RNA molecules in our samples?

ideally, the entire universe of transcripts has been sufficiently sampled
(diverse library)

no contaminations (rBRNA, foreign DNA, adapters, primers, ...)

no bias towards fragments of certain GC contents/sizes

no degradation [cannot be assessed without alignment]




Sequencing quality per cycle
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Physically localized error rates

Lane 8

A typical flowcell has 8 lanes.

Each contains tw of tiles
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' Each tile is imaged 4x per cycle Each column contains >50 tiles
QPper tile sequence quality Dper tile sequence quality

Quality per tile Quality per tile

228
222

219
216
213
210
2207
2204
2201
2126
2123
2120
2117
214
M 2111

2108
tile =

2102

1
218

1215
1212
1209
1206
1203
128
12s
Hz2
e
116
i3
1o
107
1104
Lol

12345678910 12 14 16 18 20 22 24 26
Position in read (bp)

123456789 1213 1819 24-25 30-31 36-37 4243 4849 34-55 6061 6667 7273 78-79 84-85 5091 96-97

CyC | e Position is read (bp)



Seqguence composition
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“normal” RNA-seq pattern highly irregular pattern
- random hexamer priming not often indicative of adapter contamination
sufficiently random



More QC details

Zhou, X., & Rokas, A. (2014). Prevention, diagnosis and
treatment of high-throughput sequencing data
pathologies. Molecular Ecology, 23(7), 1679-1700.
https://doi.org/10.1111/mec.12680

https://rtsf.natsci.msu.edu/genomics/tech-notes/fastqc-
tutorial-and-faq

https://sequencing.qgcfail.com/

https://www.bioinformatics.babraham.ac.uk/projects/
fastgc/Help/
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READ MAPPING



Different philosophies of transcript quantification

alignment followed by

counting of reads overlapping

with genes/exons
e.g. STAR +
featureCounts

Target Sequence

5' ACTACTAGATTACTTACGGATCAG

Query Sequence

5' TACTCACGGATGAG

Both approaches absolutely

rely on excellent reference
seqguences.

estimating expression levels
of individual isoforms/genes
based on alignment-free k-
mer matching
salmon, kallisto

x [ATGTGTG|  y [CATGTG]

Query sequences

PO M ATG | U CAT
(TG ATG
TGT|
(TGT| GTG
GTG|

Union of two W.= WxUWy |i;~g:~:~\;,:;;;~:~,5_| | | | |
sets g— Wy 3 Ball
Word counts < HEEA - HREE
Euclidean

distance les-csl V(0-1)2+(1-1)+(2-1)24(2-1 )2=ﬁ=1 7




Read alignment basics

silajc|Gc|T|{C|A|T|C]|A S2|Tt|Aa|lec|T|Gc|T|C|A

Alignment = lining up the letters of two (or more) strings so that each
letter in S1 either matches a gap or another letter in S2.

a o I
S1 Alc|lGg|T|c|la|T|Cc|A edit distance
SN J vV V J J = number of changes that are
X needed to match S1 and S2
S2 T | A G| T | G T | C | A
N /

To find the best alignment, we need:

Needleman-
Wunsch | Smith-
Waterman | BLAST

choices made by
the programmer
of a given tools

» scoring function for the edit distance
» efficient alignment-solving algorithm

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-096-algorithms-for-computational-

biology-spring-2005/lecture-notes/lecture5_newest.pdf



LINEAR REPRESENTATION

MATRIX REPRESENTATION

el o [ el » L= el =
A

C/G

Goal:

find the best-scoring
\

path through the
alignment matrix.

ST

Query Word List:

Database Sequence W

RTT
SDG
SRW
> QEL
VKI

v

OxsZ2Q0oH =D
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Aligning short RNA-seq reads

full-length mRNA

5" ) AAAARA 3
Particular challenges of lllumina
sequencing:
+ the query sequences (= reads) are ve
cDNA fragments sh O:'t y'seq ( ) Y
--- )  there are millions of them!
) (I ] - cannot expect 100% exact matches
» Seq. errors
l sequencing > biological variation
> reference errors
aligned reads - HNA-seq: some cDNA fragments can
— only be aligned if one allows for gigantic
[y ] -
S a8 gaps (= introns)
G O EEn . =

exon exon



Aligning short RNA-seq reads

full-length mRNA Spliced alignment tools
> 3 usually need:

l 1) reference genome
cDNA fragments for the alignment
--- CJ 2) annotation to inform
B decisions about

| where to allow gaps
sequencing : :
In the alignment
aligned reads . greatest downside of
— alignment approach: it’s

... and the result is not inherently
quantitative (it's just read
coordinates, really)!

- resource-intensive!




Pseudo-alignment = alignment-free k-mer matching

— ]
gene
iso- O
forms p——

sequenced read

sequences are split into k-mers, which can
then be represented as nodes

k-mers shared
between the read and
a transcript set

transcript set k-mers without
matches in the read

Bray et al. (2016). doi: 10.1038/nbt.3519



Kallisto’s pseudoalignment

sequenced read

’———-

read nodes with the same
transcript “equivalence
class”

AN

all possible equivalence ===

, = N L A= _ final transcriptlequivalence
classes for a givenread gy ' T | T class for the given read

Bray et al. (2016). doi: 10.1038/nbt.3519




Alignment vs. lightweight mapping

Example workflow

STAR +
featureCounts

salmon

Read mapping based
on:

Where does a read
match best?

Which collection of
unique k-mer’s does a
given read match best?

Reference needed:

Genome sequence +
exon boundaries

cDNA sequences

Mapping result

Genome coordinates
(BAM)

Table of expression level
estimates (txt)

Expression
quantification:

Counting how many
reads overlap a gene.

Summing the values
assigned to each
collection of unique k-
mers (equivalence class)

Output:

Read counts (integers)

Estimated transcript
abundances (numeric)

Speed

++ & +++

++++




Read mapping

Images
tif Base calling & demultiplexing
Bustard/RTA/OLB, CASAVA
Raw reads
.fastqg Mapping
STAR
Algned reads . Theoretical

.sam/ .bam

background

Read count table . Reference &
annotation files

Files with
aligned reads:
SAM/BAM

List of fold changes & statistical values _ Looking at
aligned reads

Normalized read count table

Downstream analyses on DE genes




Reference sequences

- reference sequences (genome, cDNA, ...) were originally
produced with Sanger sequencing

- most reference sequences will undergo continuous
refinement (= “genome versions”)

- RefSeq & Ensembl are two pan-species databases with
homogenous computational annotation workflows

- reference genomes are longer, but less ambiguous than
reference transcriptome sequences!

Reference sequences are provided in FASTA (!) format.
Compressed versions of FASTA are typically 2bit or fa.gz.




Most individual RNA variations do not find their
way Iinto the reference sequences

< Gene >
B o Intron ='CHIN Intron | Exon
.
L o
: @ I - ®
- ~ R N — -
2/ ——— @ L ﬁ
§< _________ o _@ — = = - s CAGCAG e
‘é’ ——————————————————————— ﬁ
S m & runnniEER b 4 o (14)
© ®
'l [ @
.
B Genetic R S —
Transcriptional Reference transcripts

- Post-transcriptional

SENENE TRANSCRIPTIONAL

5 bidirectional TSS

6 antisense transcript
7 enhancer RNA
8 alternative TSS

Morillon & Gautheret (2019) Genome Biology, 20(1), 112. doi: 10.1186/s13059-019-1710-7



Gene annotation

(SNAP)
b—_
Ao ESTeidence T e ——
oA o —
Protein evidence
(BLASTX) l
Gene annotation resulting Start codon Stop codon
from synthesizing al ] — |
available evidence = i
(two alternative splice forms) _
229500  229.000 228500 228000 227500  227.000 226500
b
Sl UTR p 3.UTR

Gene annotations generally include UTRs, alternative splice isoforms and have
attributes such as evidence ftrails.

Yandell (2012). A beginner’s guide to eukaryotic genome annotation. doi: 10.1038/nrg3174



Annotation: defining transcript structures

- Automated vs. manual
curation (“evidence-based”)

Start codon Stop codon

- heterogeneous types of
evidence: expressed
sequence tags (ESTs), RNA-
seq data, protein homologies,
CDS predictions

" 220500 229000 228500 = 228000 227500 227000 226500
b,
S'UTR P 3UTR

Annotation is dynamic! (sequence, coordinates, types of elements)

Ensembl RefGene
RefSeq ncbi.nim.nih.gov/refseq

@ UCSC Known Genes genome.ucsc.edu

@ 882 Ensembl/Gencode gencodegenes.org

1/3 protein-coding genes
> 17,000 non-coding RNAs

> 15,000 pseudogenes

Zhao & Zhang (2015) BMC Genomics. doi:10.1186/s12864-015-1308-8



Integrative genome annotation

Direct
Ensembl  RefSeq Specialized db RNA-seq assembly
Human =8 BEEUE Gopcode e Mitranscriptome

38711 '

58721 91013

58735

cigns 259 . = Gencode FFEEE | ess g p
\‘\
61109 44377 61574 A 323258 |2 o9
Worm werrs 11 oson; 158 Wormbase 4roeg 130 \\ e CHESS
34767 34114 35359
y 1.99 Flybase 1.99
. 17737 17101 17773 Transcripts
. . 55398 48030 48359
Arabidopsis ings 62 _— Araport SRS _ Ratio
7127 12236 NA Genes
Yeast 7024 L 5123 . SGD 7128 L

Morillon & Gautheret (2019) Genome Biology, 20(1), 112. doi: 10.1186/s13059-019-1710-7



Which annotation should one use?

“More sensitive annotations, such as Ensembl
(...) should be preferred over more specific

annotations, such as RefSeq (...) if the aim is
to obtain accurate expression estimates.”

Janes et al. (Briefings in Bioinformatics, 2015). doi:
10.1093/bib/bbv007

“We observe that RefSeq Genes produces the
most accurate fold-change measures with
respect to a ground truth of RT-qPCR gene
expression estimates. “

Wu et al. (BMC Bioinfo, 2013). doi:
10.1186/1471-2105-14-S11-S8

“In practice, there is no simple answer to this question, and it depends on the purpose
of the analysis. (...) When choosing an annotation database, researchers should keep in

mind that no database is perfect and some gene annotations might be inaccurate
or entirely wrong.”

Zhao & Zhang (BMC Genomics, 2015). d0i:10.1186/s12864-015-1308-8



Storing annotation information

- representing genome coordinates + description/name

- intron—exon structures, start and stop codons, UTRs, alternative transcri

see the course
notes for
details

- various formats (all are plain text files): GFF2, GFF3, GTF, BED, SAF...

(11 ”» i| # GFF-version 2
GTF ( GFF2'5 ) '.-l Iv curated exon 5506900
. sl IV curated exon 5506026
1. reference coordinate . iv  curated exon  ssossss
s| IV curated exon 5506738
2. source : .
7| # GFF-version 3
3. annotation type et za oA L0KO 00
L. 0] ctgl23 exon 3000 3902
4 start pos|t|on n| ctgl23 exon 5000 5500
12l ctgl123 exon 7000 9000
5. end position
6. score : :
# example for the 9th field of a GTF file
7 Strand gene_id "Em:U62.C22.6";
8. frame/phase
9.

5506996 .
5506382 .
5506660 .
5506852 .

+ + + + +

Transcript
Transcript
Transcript
Transcript

+ %+ + +

ID=exon00001
ID=exon00002
ID=exon00003
ID=exon00004
ID=exon00005

attributes: <TYPE VALUE>; <TYPE VALUE>; <TYPE VALUE>

GFF2

B0273.1
B0273.1
B0273.1
B0273.1

GFF3

GTF

transcript_id "Em:U62.C22.6.=2RNA"; exon_number 1



O vs. 1 based conventions

one-based, fully-closed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
SESEEEE R EERE. GFF format
A
ATG location: 7-9or|[7,9]
Cut site: 11M20r (11,12)
Interval length = stop - start + 1
zero-based, half open
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
RN BED tormat
C ACATTA ATGTGT CT CTGC
A
ATG location: 6 -9or[6,9) ) llllttip:k/)i )
A alternateallele.blogspot.com
Cut site: 11-11 or [11 ’11) 2012/O3/genome—coordignapte—cheat—
Interval length = stop - start sheet .html

http://alternateallele.blogspot.de/2012/03/genome-coordinate-conventions.html



Spliced Transcriptome Alignment to Reference
(STAR)

Map Map again ) N
MMP1 | MMP2 accu][ate & sensitive
RNA-seq read Very aSt. .
: * memory intensive!

(use it on the server!)

exons in the genome

Spliced alignment programs ¢ MMP = maximal mappable prefix
GEM amn (aka maximum matching portion)

GEM ann

GEM cons

GEM cons ann
GSNAP

GSNAP ann
GSTRUCT
GSTRUCT ann
MapSplice
MapSplice ann
PALMapper
PALMapper ann
PALMapper cons
PALMapper cons ann
PASS

PASS cons
ReadsMap
SMALT

STAR 1-pass
STAR 1-pass ann
STAR 2-pass
STAR 2-pass ann
TopHat1

TopHat1 ann
TopHat2
TopHat2 ann

* reads are split when a continuous
alignment is not possible

« the remaining unmappable portion
is then aligned again

 finally, aligned portions of the
original full-length reads are
stitched together

Engstrom et al. (2013) Nature Methods,

10(12), 1185-1191. doi:10.1038/nmeth.2722

T T T T 1
20 40 60 80 100
% mapped fragments

o

Dobin (2013). Bioinformatics, 29(1), 15-21. doi:10.1093/bioinformatics/bts635



STAR spliced alignment

Map Map again o
MMP1 ! MMP 2 « accurate & sensitive
"i I RNA-seq read ° very fast
l * memory intensive!

exons in the genome

Spliced alignment programs

BAGET ann

GEM ann

GEM cons

GEM cons ann
GSNAP

GSNAP ann
GSTRUCT
GSTRUCT ann
MapSplice
MapSplice ann
PALMapper
PALMapper ann
PALMapper cons
PALMapper cons ann
PASS

PASS cons
ReadsMap
SMALT

STAR 1-pass
STAR 1-pass ann
STAR 2-pass
STAR 2-pass ann
TopHat1

TopHat1 ann
TopHat2
TopHat2 ann

STAR has myriad options! Tune them

to meet your needs

Current Protocols in Bioinformatics
(Sept 2015)
DOI: 10.1002/0471250953.bi1114s51
and
STARmanual.pdf

Engstrom et al. (2013) Nature Methods,

10(12), 1185-1191. doi: 10.1038/nmeth.2722

o -
n
o
N
o
D
o
—
o
o

80
% mapped fragments

Dobin (2013). Bioinformatics, 29(1), 15-21. doi:10.1093/bioinformatics/bts635



2 main STAR modules

—-—-runMode genomeGenerate
-—-genomeFastaFiles sacCer3.fa

1. generate genome index | --syaverrEile saccer3.gtr

N
needs to be done just
1x per transcriptome!

J

2. align

SrunSTAR —-genomeDir STARindex/ \

2.1. align to reference & identify ——readFilesIn $FASTQ FILES \
novel Sp]ice junCtionS --readFilesCommand zcat \

2.2 re-run alignment including ——f S aveeE

the novel splice junctions must be done for
every sample

Let’s align the reads for WT_1!




