
Day 2: Identifying the transcripts that were 
sequenced


1.  Experimental Design


2.  FastQC results


3.  Reference genome & transcript annotation


4.  Alignment

•  STAR


•  BAM/SAM files


5.  QC of alignment step




EXPERIMENTAL DESIGN

How to avoid spurious signals and drowning in noise




Why do we need replicates?


“Samples are our windows to the 
population, and their statistics are 
used to estimate those of the 
population.”  
Martin Krzywinski & Naomi Altman 

Goal: Identify differences in expression for every gene.


…and “differences” should preferably be due to our experiment, not noise!


 doi:10.1038/nmeth.2613 



Invest in replicates!


•  recommended: 6 biological replicates per condition for 
DGE of strongly changing genes (logFC >= 2) [based on 
insights from the fairly simple yeast transcriptome]
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Outlier fraction 
The poor correlations shown by some replicates are the result of a small proportion 
of genes with atypical read counts. These outliers can be identified by comparing each 
gene’s expression in an individual replicate with the trimmed mean across all repli-
cates. Specifically, the 𝑛𝑡  largest and smallest values are trimmed from the set of rep-
licates for a gene before calculating the mean (𝑥̅𝑔;𝑛𝑡) and standard deviation (𝑠𝑔;𝑛𝑡). 
Genes are then identified as outliers if |𝑥𝑔𝑖 − 𝑥̅𝑔;𝑛𝑡| > 𝑛𝑠𝑠𝑔;𝑛𝑡 , where 𝑛𝑠 is a constant. 
Fig. 2b shows the fraction 𝑓𝑖  of all genes identified as outliers for each replicate 𝑖, for 
𝑛𝑡 = 3 and 𝑛𝑠 = 5. As expected, the anomalous replicates with high outlier fraction 
in Fig. 2b correspond well with the poorly correlating replicates in Fig. 2a. Increasing 
𝑛𝑡  and/or decreasing 𝑛𝑠 enhances the outlier fraction in replicates already identified 
as anomalous; for example, reducing the standard deviation limit to 𝑛𝑠 = 3 boosts the 
outlier fraction in these replicates by a factor ~2–3.  

Gene read depth profiles 
The atypical total read counts of outlier genes are, in our case, the result of an atypi-
cal, strongly non-uniform, read depth gene profile. An example of the difference of 
the read depth profiles between clean and “bad” replicates is shown in Fig. 3 for the 
gene YHR215W. The distribution of reads from the example “bad” replicate (WT rep-
licate 21, red line) is much less uniform than the mean read depth from the other 
“clean” replicates (black line) with distinct peaks in the distributions that are 50 bp 
long. These suspicious features are found universally in all outlier genes in “bad” rep-
licates and can be also seen in some (but not all) non-outlier genes in these replicates. 
It is likely that the cause of this atypical read distribution is uneven priming during 
the PCR amplification step of the library preparation, prior to the sequencing. The 
level of gene non-uniformity in each replicate can be quantified with a reduced chi-
squared statistic for each gene in each replicate, defined as  

 
Fig. 3. Read depth profiles of YHR215W (PHO12). The black line indicates the mean read counts 
from all “clean” WT replicates for a given genomic position in the gene YHR215W (the set of 
“clean” replicates is defined in Section 3.1). The grey lines show the mean read depth plus/minus 
one standard deviation. The red line illustrates the read depth profile from a single example “bad” 
replicate (WT replicate 21). The block diagram at the bottom shows the simple gene structure of 
YHR215W. 

 

Gierliński et al. (2015). Bioinformatics, 31(22), 3625–3630. & Schurch et al. (2016) RNA.


average WT 

(w/out #21)

+/- std. deviation


individual WT replicate


The most effective way to improve detection of differential expression in low 
expression genes is to add more biological replicates, rather than adding more 
reads (see Rapaport et al., 2013). 



Replicate types

Technical  replicates


library prep


sequencing lane


RNA extraction


library prep

sequencing lane


sequencing lane

sequencing lane


RNA from an independent growth of cells/tissue

RNA extraction


RNA extraction


Biological  replicates


sequencing lane

library prep


sequencing lane


sequencing lane

sequencing lane


also see course notes and Blainey et al. (2014) Nature Methods, 1(9) 879–880.  



Gilad & Mizrahi-Man (2015). F1000Research 4:121


“Once	we	accounted	for	the	batch	
effect	(…),	the	comparative	gene	
expression	data	no	longer	clustered	by	
species,	and	instead,	we	observed	a	
clear	tendency	for	clustering	by	
tissue.”		

Batch effects can happen everywhere


“Overall,	our	results	indicate	that	there	is	
considerable	RNA	expression	diversity	
between	humans	and	mice,	well	beyond	
what	was	described	previously,	likely	
reflecting	the	fundamental	physiological	
differences	between	these	two	organisms.	“	

Lin, Lin, and Snyder (2014). PNAS 111:48




ENCODE’s* study design was not optimal


* not just ENCODE: see e.g. Leek et al. (2010) Nat Rev Gen 11(10) 733-739 or Jaffe & Irizarry (2014) Genome Biol 15(R31) 1–9


A very good read (including the reviews and comments) that discusses many 
scientific as well as ethical issues: https://f1000research.com/articles/4-121/v1


not all variables can be controlled for

human data:  deceased organ donors

mouse data: 10-week-old littermates


and that’s ok, but you’ve 
got to be mindful of these 
limitations when making 

bold claims


Most human samples were sequenced separately from the mouse 
samples:


Many tissues were not

sex-matched 




Avoiding bias


Block what you can, 

randomize what you cannot.


Completely randomized design


Restricted randomized design


WEIGHT


Blocked & randomized design


What factors are of interest? Which ones might introduce noise? 
Which nuisance factors do you absolutely need to account for?


Krzywinski & Altman (2014)  Nature Methods 11(7)




Auer & Doerge (2010). Genetics, 185(2), 405–16.  

Make sure the sequencing 
core multiplexes all samples!


Typical RNA-seq 
set-up

•  keep the technical nuisance 

factors (harvest date, RNA 
extraction kit, sequencing 
date…) to a minimum


•  cover only as much of the 
biological variation as 
needed (but keep possible 
limitations for the final 
conclusions in mind)




How deep is deep enough?


Goals that require more, longer, and possibly paired-
end reads:

•  quantification of lowly expressed genes

•  identification of genes with small changes between conditions

•  investigation of alternative splicing/isoform quantification

•  identification of novel transcripts, chimeric transcripts

•  de novo transcriptome assembly


for DGE (logFC~ 2) in mammals:

 20 – 50 mio SR, 75 bp


Remember: The addition of replicate samples provides substantially greater 
detection power of DE than increased sequence depth. (Rapaport et al., 2013)


https://doi.org/10.1186/gb-2013-14-9-r95 https://www.encodeproject.org/




Summary

• RNA-seq analysis is not a completely solved issue – but 

DE analysis on a gene level is decently mature and the 
field seems to gravitate towards some sort of standard


•  no analysis tool can enforce (or replace!) common sense 
and knowledge about the biology behind the experiment


•  crap in, crap out


• more replicates are often better investments than more 
reads




QUALITY CONTROL OF 
RAW READS

FastQC results






FastQC & MultiQC

randomly selected 8 biological replicates for each condition (WT, SNF2)


http://chagall.med.cornell.edu/RNASEQcourse/multiqc_report.html



Two basic questions of QC


• How successful was the actual sequencing?

•  consistently high base call confidence




• Did our library pep generate a faithful representation of 
the DNA/RNA molecules in our samples?

•  ideally, the entire universe of transcripts has been sufficiently sampled 

(diverse library)

•  no contaminations (rRNA, foreign DNA, adapters, primers, …)

•  no bias towards fragments of certain GC contents/sizes

•  no degradation [cannot be assessed without alignment]




Sequencing quality per cycle

Ph

re
d 

sc
or

e


noise/uncertainty = fluorophore intensity not as clear as expected




Physically localized error rates


tile


cycle




Sequence composition


“normal” RNA-seq pattern

à random hexamer priming not 

sufficiently random


highly irregular pattern

often indicative of adapter contamination




More QC details


•  Zhou, X., & Rokas, A. (2014). Prevention, diagnosis and 
treatment of high-throughput sequencing data 
pathologies. Molecular Ecology, 23(7), 1679–1700. 
https://doi.org/10.1111/mec.12680


•  https://rtsf.natsci.msu.edu/genomics/tech-notes/fastqc-
tutorial-and-faq


•  https://sequencing.qcfail.com/


•  https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/Help/




Zhou, X., & Rokas, A. (2014). doi: 10.1111/mec.12680




READ MAPPING

Finding out where the reads came from




Different philosophies of transcript quantification

alignment followed by 

counting of reads overlapping 
with genes/exons


e.g. STAR + 
featureCounts

estimating expression levels 
of individual isoforms/genes 
based on alignment-free k-

mer matching

salmon, kallisto

�Zielezinski et al. (2017). Genome Biology. doi: 10.1186/s13059-017-1319-7


Both approaches absolutely 
rely on excellent reference 

sequences.




Read alignment basics

A C G T C A T C A T A G T G T C A

A C G T C A T C A

T A G T G T C A

S1
 S2


S1


S2

✓ ✗ � � � ✓ ✓ ✓ ✓ ✓ 

edit distance

= number of changes that are 
needed to match S1 and S2


Alignment = lining up the letters of two (or more) strings so that each 
letter in S1 either matches a gap or another letter in S2.


To find the best alignment, we need:




Ø  scoring function for the edit distance

Ø  efficient alignment-solving algorithm
 


Needleman-
Wunsch | Smith-

Waterman | BLAST


choices made by 
the programmer 
of a given tools


https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-096-algorithms-for-computational-
biology-spring-2005/lecture-notes/lecture5_newest.pdf
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Goal:

find the best-scoring 

path through the 
alignment matrix.


LINEAR REPRESENTATION


MATRIX REPRESENTATION




AAAAAA


Aligning short RNA-seq reads


full-length mRNA

5’
 3’


cDNA fragments


sequencing


reads
aligned reads


Particular challenges of Illumina 
sequencing:


•  the query sequences (= reads) are very 
short


•  there are millions of them!

•  cannot expect 100% exact matches


Ø  seq. errors

Ø  biological variation

Ø  reference errors


•  RNA-seq: some cDNA fragments can 
only be aligned if one allows for gigantic 
gaps (= introns)


exon
exon




AAAAAA


Aligning short RNA-seq reads


full-length mRNA

5’
 3’


cDNA fragments


exon
exon


sequencing


reads
aligned reads


Spliced alignment tools 
usually need:


1)  reference genome 
for the alignment


2) annotation to inform 
decisions about 
where to allow gaps 
in the alignment


greatest downside of 
alignment approach: it’s 

resource-intensive!

… and the result is not inherently 

quantitative (it’s just read 
coordinates, really)!




gene 
iso-

forms


Bray et al. (2016). doi: 10.1038/nbt.3519


sequences are split into k-mers, which can 
then be represented as nodes


sequenced read


k-mers shared 
between the read and 

a transcript set
 transcript set k-mers without 
matches in the read


Pseudo-alignment = alignment-free k-mer matching




gene 
iso-

forms


read nodes with the same 
transcript “equivalence 

class”


final transcript equivalence 
class for the given read


all possible equivalence 
classes for a given read


sequenced read


Bray et al. (2016). doi: 10.1038/nbt.3519


Kallisto’s pseudoalignment




Alignment vs. lightweight mapping

Alignment Pseudo-alignment 

Example workflow STAR + 
featureCounts

salmon

Read mapping based 
on: 

Where does a read 
match best? 

Which collection of 
unique k-mer’s does a 
given read match best? 

Reference needed: Genome sequence + 
exon boundaries 

cDNA sequences 

Mapping result Genome coordinates 
(BAM) 

Table of expression level 
estimates (txt) 

Expression 
quantification: 

Counting how many 
reads overlap a gene. 

Summing the values 
assigned to each 
collection of unique k-
mers (equivalence class) 

Output: Read counts (integers) Estimated transcript 
abundances (numeric) 

Speed ++ & +++ ++++ 



Images

Raw reads

Aligned reads

Read count table

Normalized read count table

List of fold changes & statistical values

Downstream analyses on DE genes

FASTQC 

Base calling & demultiplexing

Mapping


.tif 

.fastq 

.sam/.bam 
Aligned reads

Bustard/RTA/OLB, CASAVA 

STAR 
RSeQC, 
QoRTs 1.  Theoretical 

background

2.  Reference & 

annotation files

3.  Files with 

aligned reads: 
SAM/BAM 

4.  Looking at 
aligned reads


Read mapping




Reference sequences


•  reference sequences (genome, cDNA, …) were originally 
produced with Sanger sequencing


• most reference sequences will undergo continuous 
refinement (à “genome versions”)


• RefSeq & Ensembl are two pan-species databases with 
homogenous computational annotation workflows


•  reference genomes are longer, but less ambiguous than 
reference transcriptome sequences!


Reference sequences are provided in FASTA (!) format.

Compressed versions of FASTA are typically 2bit or fa.gz.




Most individual RNA variations do not find their 
way into the reference sequences


�Morillon & Gautheret (2019) Genome Biology, 20(1), 112. doi: 10.1186/s13059-019-1710-7


GENETIC 

1 SNP or short InDel 
2 microsatellite 
variation 
3 transposition 
4 gene fusion 

TRANSCRIPTIONAL

5 bidirectional TSS 
6 antisense transcript 
7 enhancer RNA 
8 alternative TSS 

POST-TRANSCRIPTIONAL

9 alternative 5' splice site (SS) 
10 alternative 3' SS 
11 alternative 3' SS 
12 skipped exon 

13 alternative poly(A) site 
14 editing and modification 
15 processed pre-mi/
snoRNA 
16 circular RNA 



Gene annotation


�Yandell (2012). A beginner’s guide to eukaryotic genome annotation. doi: 10.1038/nrg3174


Gene annotations generally include UTRs, alternative splice isoforms and have 
attributes such as evidence trails. 



Annotation: defining transcript structures

•  Automated vs. manual 

curation (“evidence-based”)

•  heterogeneous types of 

evidence: expressed 
sequence tags (ESTs), RNA-
seq data, protein homologies, 
CDS predictions


alternative mappings are generally inferior compared to
their corresponding mapping results using a gene model
[20]. Similar to non-junction reads, an average of 5% of
junction reads were mapped to more than one location
without using a gene model. As shown in Figure 3C,
more uniquely-mapped junction reads became multiple
mapped reads in RefGene and/or UCSC than in Ensembl
when the sequence reads were aligned to the reference
genome without the use of gene models.

The impact of gene model choice on gene quantification
Different gene identifiers are used in different annotation
databases; therefore, we mapped those database-specific
identifiers into the unique HGNC gene symbols from
the HUGO Gene Nomenclature Committee when com-
paring their gene quantification results across the differ-
ent gene models originating from these databases.
Considering that annotations are more or less incom-
plete in these databases, we only focused on common
genes. The Venn diagram in Figure 4 showed the overlap
and intersection of RefGene, UCSC, and Ensembl anno-
tations. Clearly RefGene has fewest unique genes, while
more that 50% of genes in Ensembl are unique. In gen-
eral, the different annotations have very high overlaps:
21,598 common genes are shared by all three gene
annotations.
To investigate the impact of different gene models on

gene quantification results, we focused on this set of
21,598 common genes. The overall correlation between
RefGene and Ensembl was shown in Figure 5. Both x
and y-axes represented log2(count + 1). For all genes, 1
was added to the counts to avoid a logarithmic error for
those genes with zero counts. Ideally, we should get
identical numbers of mapped reads for all common genes,
regardless of the choice of a gene model; however, this
was clearly not the case. Although the majority of genes
had highly consistent or nearly identical expression levels,

there were a significant number of genes whose quantifi-
cation results were dramatically affected by the choice of a
gene model. As shown in Figure 5, there were many genes
for which the number of reads mapped to them was 0 in
one gene model, but many in others.
To quantify the concordance between RefGene and

Ensembl annotations, we first calculated the ratio of
mapped read for each gene. For a given gene, we defined
the raw read counts in RefGene and Ensembl annota-
tions as #C1 and #C2, respectively. To prevent division
by 0, 1 was added to all raw read counts before the ra-
tios were calculated. The adjusted counts were denoted
as #C1’ (=#C1 + 1) and #C2’ (=#C2 + 1), respectively.
The ratio was calculated as Max(#C1’,#C2’)/Min(#C1’,
#C2’). Therefore the calculated ratio was always equal or
greater than 1. The distribution of ratios was summa-
rized in Table 1 (read length = 75 bp). Among the 21,958
common genes, about 20% of genes had no expression
at all in both annotations. Identical counts were ob-
tained for only 16.3% of genes. Approximately 28.1% of
genes’ expression levels differed by 5% or higher, and
among them, 9.3% of genes (equivalent to 2038) differed
by 50% or greater. As shown in Table 1 and Figure 5,
the choice of a gene model had a large impact on gene
quantification. The concordance between UCSC and
RefGene annotation was reported in Additional file 1:
Table S7 (read length = 75 bp). Compared with Ensembl,
UCSC had a much better concordance with RefGene, in
terms of the gene quantification results. 38.3% of genes
had identical read counts, much higher than the 16.3%
between Ensembl and RefGene. The percentage of genes
with expression levels differing by 5% or more was only
11.3%, which was much less than the corresponding 28%
between Ensembl and RefGene. Furthermore, only 3.24%
of genes‘ quantification results differed by 50% or
greater, which was lower than the 9.3% between Ensembl
and RefGene.
Why does the choice of a gene model have so dra-

matic an effect on gene quantification? Below, we chose
a few extreme or representative cases to provide possible
explanations. In the liver sample, the expression levels for
these exemplary genes for both Ensembl and RefGene
were summarized in Table 2 (read length = 75 bp).
PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase,
catalytic subunit alpha) uses ATP to phosphorylate PtdIns,
PtdIns4P, and PtdIns(4,5)P2. In the liver sample, there
were 1094 reads mapped to PIK3CA in Ensembl annota-
tion, while only 492 reads were mapped in RefGene. The
PIK3CA gene definition in both Ensembl and RefGene,
and the mapping profile of RNA-Seq reads were shown in
Figure 6. Clearly, the difference in gene definition gives
rise to the observed discrepancy in quantification. In
Ensembl, there are three isoforms for PIK3CA, and the
longest isoform is ENST00000263967. The total length of

Figure 4 The overlap and intersection among RefGene, UCSC,
and Ensembl annotations. In general, different annotations have
very high overlaps: there are 21,598 common genes shared by all
three gene models. RefGene has the fewest unique genes, while
more than 50% of genes in Ensembl are unique.

Zhao and Zhang BMC Genomics  (2015) 16:97 Page 6 of 14

RefSeq ncbi.nlm.nih.gov/refseq

UCSC Known Genes genome.ucsc.edu

Ensembl/Gencode gencodegenes.org


Zhao & Zhang (2015) BMC Genomics. doi:10.1186/s12864-015-1308-8


1/3 protein-coding genes

> 17,000 non-coding RNAs


> 15,000 pseudogenes


Annotation is dynamic! (sequence, coordinates, types of elements) 



�Morillon & Gautheret (2019) Genome Biology, 20(1), 112. doi: 10.1186/s13059-019-1710-7




Which annotation should one use?

“More	sensitive	annotations,	such	as	Ensembl	
(…)	should	be	preferred	over	more	specific	
annotations,	such	as	RefSeq	(…)	if	the	aim	is	
to	obtain	accurate	expression	estimates.“	

Janes	et	al.	(Briefings	in	Bioinformatics,	2015).	doi:
10.1093/bib/bbv007	

“We	observe	that	RefSeq	Genes	produces	the	
most	accurate	fold-change	measures	with	
respect	to	a	ground	truth	of	RT-qPCR	gene	
expression	estimates.	“	

Wu	et	al.	(BMC	Bioinfo,	2013).	doi:
10.1186/1471-2105-14-S11-S8	

“In	practice,	there	is	no	simple	answer	to	this	question,	and	it	depends	on	the	purpose	
of	the	analysis.	(…)	When	choosing	an	annotation	database,	researchers	should	keep	in	
mind	that	no	database	is	perfect	and	some	gene	annotations	might	be	inaccurate	

or	entirely	wrong.”	
Zhao	&	Zhang	(BMC	Genomics,	2015).	doi:10.1186/s12864-015-1308-8	



see the course 
notes for 
details


Storing annotation information

•  representing genome coordinates + description/name


•  intron–exon structures, start and stop codons, UTRs, alternative transcripts


•  various formats (all are plain text files): GFF2, GFF3, GTF, BED, SAF…


GTF (“GFF2.5”)

1.  reference coordinate

2.  source

3.  annotation type

4.  start position

5.  end position

6.  score

7.  strand

8.  frame/phase

9.  attributes: <TYPE   VALUE>;  <TYPE   VALUE>;  <TYPE   VALUE> 



GFF2


GFF3


GTF




0 vs. 1 based conventions


zero-based, half open


ATG location:  6 - 9 or [6,9) 
Cut site:   11-11 or [11,11) 
Interval length =  stop - start 

http://alternateallele.blogspot.de/2012/03/genome-coordinate-conventions.html


one-based, fully-closed 

ATG location: 
 
7 - 9 or [7,9]

Cut site: 
 
 
11^12 or (11,12)

Interval length 
 = stop - start + 1


BED format


http://
alternateallele.blogspot.com/

2012/03/genome-coordinate-cheat-
sheet.html 

GFF format 



Spliced Transcriptome Alignment to Reference 
(STAR)


Dobin (2013). Bioinformatics, 29(1), 15–21. doi:10.1093/bioinformatics/bts635


•  accurate & sensitive

•  very fast

•  memory intensive! 

(use it on the server!)


•  MMP = maximal mappable prefix 
(aka maximum matching portion)


•  reads are split when a continuous 
alignment is not possible


•  the remaining unmappable portion 
is then aligned again


•  finally, aligned portions of the 
original full-length reads are 
stitched together
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ANALYSIS

Alignment yield
There were major differences among protocols in the alignment 
yield (68.4–95.1% of K562 read pairs; mean = 91.5%, s.d. = 5.4), 
extent to which both reads from a pair were mapped, and fre-
quency of ambiguous mappings (reads with several reported 
alignments) (Fig. 1 and Supplementary Tables 2 and 3). These 
trends were similar across data sets (Fig. 1). The fraction of pairs 
with only one read aligned was typically highest for TopHat, 
ReadsMap and PASS, whereas PALMapper output exhibited more 
complex discrepancies within read pairs. GEM results consistently 
included many ambiguous mappings (37% of sequenced reads 
per data set on average). Mapping ambiguities were also common 
with PALMapper, although these were reduced with the more 
conservative protocols that involve stringent filtering of align-
ments (Fig. 1 and Supplementary Fig. 1). To avoid introducing 
bias at later evaluation stages due to differences in the number 
of alignments per read, we instructed developer teams to assign 
a preferred (primary) alignment for each read mapped in their 
program output. The following results are based on these primary 
alignments unless otherwise noted.

Mismatches and basewise accuracy
Compared to the other aligners, GSNAP, GSTRUCT, MapSplice, 
PASS, SMALT and STAR reported more primary alignments 
devoid of mismatches (Fig. 2a), partly because these methods 
can truncate read ends and thus output an incomplete align-
ment when they are unable to map an entire sequence (Fig. 2b). 
PASS and SMALT performed extensive truncation, suggesting 
that these programs often report alignments shorter than is opti-
mal. MapSplice, PASS and TopHat displayed a low tolerance for 
mismatches (Fig. 2a). Consequently, a large proportion of reads 
with low base-call quality scores were not mapped by these meth-
ods (Supplementary Fig. 2). The mapping yield of TopHat was 
particularly low (mean yield of 84% on K562 data, compared to 
90% for MapSplice; Fig. 2a and Supplementary Tables 2 and 3), 
likely owing to a lack of read truncation (Fig. 2b). Note that many 

aligners have options to increase mismatch tolerance beyond the 
settings used here, but this approach may negatively affect other 
performance aspects.

Polymorphisms and accumulated mutations distinguish the 
cancer cell line K562 from the human reference assembly, which 
itself is a consensus based on several individuals16. Conversely, 
mouse RNA samples were obtained from strain C57BL/6NJ, the 
genome of which is nearly identical to the mouse reference assem-
bly17. Accordingly, high-quality reads from mouse were mapped 
at a greater rate and with fewer mismatches than those from K562 
(Supplementary Fig. 3). Even so, differences among aligners in 
mismatch and truncation frequencies were consistent across data 
sets (Fig. 2 and Supplementary Fig. 4). Mapping properties are 
thus largely dependent on software algorithms even when the 
genome and transcriptome are virtually identical.

Consistent with real RNA-seq data, GSNAP, GSTRUCT, 
MapSplice and STAR outperformed other methods for base-
wise accuracy on simulated data (Supplementary Table 2). 
As expected, error rates were substantially lower for uniquely 
mapped reads than for primary alignments of multimapped reads 
(Supplementary Table 4). Notably, despite the many ambiguous 
mappings reported by GEM and PALMapper, the primary align-
ments were usually correct (Supplementary Table 4).

Differences among methods were most apparent for spliced 
reads (Supplementary Tables 5–7). On the first simulated data 
set, GSNAP, GSTRUCT, MapSplice and STAR mapped 96.3–98.4% 
of spliced reads to the correct locations and 0.9–2.9% to alterna-
tive locations (Fig. 3 and Supplementary Table 6). Although 
these mappers assigned nearly all spliced reads to the correct 
locus, the frequency of reads for which they aligned all bases cor-
rectly was substantially lower (60.3–89.3% of spliced reads from 
simulation 1; Fig. 3). In contrast, ReadsMap and the annotation- 
based TopHat2 protocol produced high rates of perfect 
spliced alignments and few partially correct ones (Fig. 3 and 
Supplementary Table 6), a behavior consistent with the afore-
mentioned lack of read truncation. However, ReadsMap also 

TopHat2 ann
TopHat2
TopHat1 ann
TopHat1
STAR 2-pass ann
STAR 2-pass
STAR 1-pass ann
STAR 1-pass
SMALT
ReadsMap
PASS cons
PASS
PALMapper cons ann
PALMapper cons
PALMapper ann
PALMapper
MapSplice ann
MapSplice
GSTRUCT ann
GSTRUCT
GSNAP ann
GSNAP
GEM cons ann
GEM cons
GEM ann
BAGET ann

Simulation 1

Mapped fragments (%)
0 20 40 60 80 100

Simulation 2

0 20 40 60 80 100

K562

0 20 40 60 80 100

Mouse brain

0 20 40 60 80 100

Both uniquely mapped Both multimapped One unique and one multi One unique and one unmapped One multi and one unmapped

Figure 1 | Alignment yield. Shown is the percentage of sequenced or simulated read pairs (fragments) mapped by each protocol. Protocols are grouped 
by the underlying alignment program (gray shading). Protocol names contain the suffix “ann” if annotation was used. The suffix “cons” distinguishes 
more conservative protocols from others based on the same aligner. The K562 data set comprises six samples, and the metrics presented here were 
averaged over them.
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Alignment yield
There were major differences among protocols in the alignment 
yield (68.4–95.1% of K562 read pairs; mean = 91.5%, s.d. = 5.4), 
extent to which both reads from a pair were mapped, and fre-
quency of ambiguous mappings (reads with several reported 
alignments) (Fig. 1 and Supplementary Tables 2 and 3). These 
trends were similar across data sets (Fig. 1). The fraction of pairs 
with only one read aligned was typically highest for TopHat, 
ReadsMap and PASS, whereas PALMapper output exhibited more 
complex discrepancies within read pairs. GEM results consistently 
included many ambiguous mappings (37% of sequenced reads 
per data set on average). Mapping ambiguities were also common 
with PALMapper, although these were reduced with the more 
conservative protocols that involve stringent filtering of align-
ments (Fig. 1 and Supplementary Fig. 1). To avoid introducing 
bias at later evaluation stages due to differences in the number 
of alignments per read, we instructed developer teams to assign 
a preferred (primary) alignment for each read mapped in their 
program output. The following results are based on these primary 
alignments unless otherwise noted.

Mismatches and basewise accuracy
Compared to the other aligners, GSNAP, GSTRUCT, MapSplice, 
PASS, SMALT and STAR reported more primary alignments 
devoid of mismatches (Fig. 2a), partly because these methods 
can truncate read ends and thus output an incomplete align-
ment when they are unable to map an entire sequence (Fig. 2b). 
PASS and SMALT performed extensive truncation, suggesting 
that these programs often report alignments shorter than is opti-
mal. MapSplice, PASS and TopHat displayed a low tolerance for 
mismatches (Fig. 2a). Consequently, a large proportion of reads 
with low base-call quality scores were not mapped by these meth-
ods (Supplementary Fig. 2). The mapping yield of TopHat was 
particularly low (mean yield of 84% on K562 data, compared to 
90% for MapSplice; Fig. 2a and Supplementary Tables 2 and 3), 
likely owing to a lack of read truncation (Fig. 2b). Note that many 

aligners have options to increase mismatch tolerance beyond the 
settings used here, but this approach may negatively affect other 
performance aspects.

Polymorphisms and accumulated mutations distinguish the 
cancer cell line K562 from the human reference assembly, which 
itself is a consensus based on several individuals16. Conversely, 
mouse RNA samples were obtained from strain C57BL/6NJ, the 
genome of which is nearly identical to the mouse reference assem-
bly17. Accordingly, high-quality reads from mouse were mapped 
at a greater rate and with fewer mismatches than those from K562 
(Supplementary Fig. 3). Even so, differences among aligners in 
mismatch and truncation frequencies were consistent across data 
sets (Fig. 2 and Supplementary Fig. 4). Mapping properties are 
thus largely dependent on software algorithms even when the 
genome and transcriptome are virtually identical.

Consistent with real RNA-seq data, GSNAP, GSTRUCT, 
MapSplice and STAR outperformed other methods for base-
wise accuracy on simulated data (Supplementary Table 2). 
As expected, error rates were substantially lower for uniquely 
mapped reads than for primary alignments of multimapped reads 
(Supplementary Table 4). Notably, despite the many ambiguous 
mappings reported by GEM and PALMapper, the primary align-
ments were usually correct (Supplementary Table 4).

Differences among methods were most apparent for spliced 
reads (Supplementary Tables 5–7). On the first simulated data 
set, GSNAP, GSTRUCT, MapSplice and STAR mapped 96.3–98.4% 
of spliced reads to the correct locations and 0.9–2.9% to alterna-
tive locations (Fig. 3 and Supplementary Table 6). Although 
these mappers assigned nearly all spliced reads to the correct 
locus, the frequency of reads for which they aligned all bases cor-
rectly was substantially lower (60.3–89.3% of spliced reads from 
simulation 1; Fig. 3). In contrast, ReadsMap and the annotation- 
based TopHat2 protocol produced high rates of perfect 
spliced alignments and few partially correct ones (Fig. 3 and 
Supplementary Table 6), a behavior consistent with the afore-
mentioned lack of read truncation. However, ReadsMap also 

TopHat2 ann
TopHat2
TopHat1 ann
TopHat1
STAR 2-pass ann
STAR 2-pass
STAR 1-pass ann
STAR 1-pass
SMALT
ReadsMap
PASS cons
PASS
PALMapper cons ann
PALMapper cons
PALMapper ann
PALMapper
MapSplice ann
MapSplice
GSTRUCT ann
GSTRUCT
GSNAP ann
GSNAP
GEM cons ann
GEM cons
GEM ann
BAGET ann

Simulation 1

Mapped fragments (%)
0 20 40 60 80 100

Simulation 2

0 20 40 60 80 100

K562

0 20 40 60 80 100

Mouse brain

0 20 40 60 80 100

Both uniquely mapped Both multimapped One unique and one multi One unique and one unmapped One multi and one unmapped

Figure 1 | Alignment yield. Shown is the percentage of sequenced or simulated read pairs (fragments) mapped by each protocol. Protocols are grouped 
by the underlying alignment program (gray shading). Protocol names contain the suffix “ann” if annotation was used. The suffix “cons” distinguishes 
more conservative protocols from others based on the same aligner. The K562 data set comprises six samples, and the metrics presented here were 
averaged over them.
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Spliced alignment programs


•  accurate & sensitive

•  very fast

•  memory intensive!


STAR has myriad options! Tune them 
to meet your needs 

Current Protocols in Bioinformatics 
(Sept 2015) 

DOI: 10.1002/0471250953.bi1114s51 
and 

STARmanual.pdf 
% mapped fragments



2 main STAR modules


1.  generate genome index





2.  align


2.1. align to reference & identify 
novel splice junctions

2.2 re-run alignment including 
the novel splice junctions


--runMode genomeGenerate 
--genomeFastaFiles sacCer3.fa 
--sjdbGTFfile sacCer3.gtf 

--twopassMode  

Let’s align the reads for WT_1!


$runSTAR –genomeDir STARindex/ \ 
          --readFilesIn $FASTQ_FILES \ 
          --readFilesCommand zcat \ 

needs to be done just 
1x per transcriptome!


must be done for 
every sample



