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Day 1: Obtaining RNA-seq data


1.  Introduction


2.  Library preparation


3.  Illumina-based sequencing


4.  Raw data




Quantifying gene expression of thousands of genes: 
Microarrays vs. “RNA” sequencing


•  fixed probes that capture DNA of 
pre-defined sequences


•  the read-out is fluorescence 
intensity based on how many probes 
of a given sequence were able to 
hybridize with cDNA fragments


http://compbio.pbworks.com/w/page/16252892/Gene%20Expression%20Microarrays%20and%20Experiments


•  any cDNA fragment can be 
sequenced


•  the read-out are the base identities 
(= the actual cDNA sequence) inferred 
via DNA polymerase-based 
amplification of the captured 
fragments using labelled dNTPs


pre-defined 
probes [multiple 

identical probes per 
gene]


fluorophore-tagged 
cDNA fragments
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Fig. from Lowe et al. (2017) Transcriptomics technologies. PLOS Comp Bio. doi: 10.1371/journal.pcbi.1005457


RNA-seq


RNA microarrays 

serial/cap analysis


expressed 
sequence 
tag 

•  1980s: Sanger sequencing, 
i.e. one (1) DNA fragment 
at a time




•  2000s: massively 

parallelized sequencing 
allows for millions of DNA 
fragments to be 
sequenced simultaneously


•  short cDNA fragments (250-1,000bp), even shorter reads 
(= sequence info) (50-300bp)


•  requires clonal amplification

•  higher error rates than Sanger


“2nd generation” 
sequencing


RNA-seq’s rise goes hand-in-hand with progress of 
high-throughput DNA sequencing




Evolution of HTS machines


�Fig. from Reuter et al. (2015). Molecular Cell, 58(4), 586–597. 




Next-generation sequencing


High-throughput

millions of 
nucleotides can 
be sequenced at 
once

Relatively cheap*

experiments 
involving NGS 
have become 
abundant

Bioinformatics


relatively large data 
files are being 

generated on a regular 
basis


Processing

formatting, data wrangling


Alignment

Statistical analyses


Interpretation


* The cost of analysis has 
remained high and is 
difficult to estimate!


The DNA sequencing revolution has boosted 
the need for bioinformatics




RNA-seq is popular, but constantly developing


Reuter et al. ( 2015). Mol Cell.       Goodwin, McPherson & McCombie (2016). Nat Gen, 17(6), 333–351




size ~ publication rate

10.1371/journal.pcbi.1005457 
Lowe et al. (2017) RNA-seq


microarrays


“RNA-seq	is	not	a	mature	technology.	It	is	
undergoing	rapid	evolution	of	biochemistry	
of	sample	preparation;	of	sequencing	
platforms;	of	computational	pipelines;	and	of	
subsequent	analysis	methods	that	include	
statistical	treatments	and	transcript	model	
building.	“	 ENCODE	consortium	



RNA-seq “analysis paralysis”

•  basically no generally 

accepted standard reference 
(transcript definitions often 
change quarterly)


•  myriad tools à highly 
complex & specialized 
“pipelines”


“The (…) flexibility and seemingly 
infinite set of options (…) have 

hindered its path to the clinic. (…) The 
fixed nature of probe sets with 

microarrays or qRT-PCR offer an 
accelerated path (…) without the lure 

of the latest and newest analysis 
methods.” 

Byron et al., 2016  

Byron et al. Nat Rev Genetics (2016) doi: 10.1038/nrg.2016.10




RNA-seq platforms


currently, all mainstream RNA-seq solutions rely on copying RNA into cDNA 
prior to sequencing




 direct sequencing of RNA (Nanopore) is in its infancy, but will be useful to 

detect modified bases and avoid biases from the amplification steps


Illumina almost has a de facto monopoly on high-throughput sequencing


Lowe et al. (2017) PLoS Comp Bio. doi: �10.1371/journal.pcbi.1005457




What to expect from the class


Sample type 
& quality


Sequencing 

•  Read length

•  PE vs. SR

•  Sequencing errors


Experimental design

•  Controls

•  No. of replicates

•  Randomization


Library preparation 

•  Poly-A enrichment 

vs. ribo minus

•  Strand information


Bioinformatics 

•  Aligner

•  Normalization

•  DE analysis strategy


•  Expression quantification

•  Alternative splicing

•  De novo assembly needed

•  mRNAs, small RNAs

•  ….


Biological question


NOT COVERED:

•  single-cell RNA-seq


•  circular RNAs

•  novel transcript 

discovery

•  transcriptome 

assembly

•  alternative splicing 

analysis

(see the course notes for 

references to useful 
reviews)




Day 1: Introduction into high-throughput 
sequencing 

[many general concepts of NGS that are often not 
unique to RNA-seq]


1.  RNA isolation & library preparation


2.  Illumina’s sequencing by synthesis


3.  raw sequencing reads

• download


• quality control




RNA-seq workflow overview


Sequencing

•  mRNA enrichment

•  fragmentation

•  cDNA library preparation


Bioinformatics

•  cluster generation 
•  sequencing by synthesis 
•  image acquisition 

Total RNA extraction
RNA 

cDNA with adapters 

cells 

fragments 



RNA extraction


�Thatcher (2015). DNA/RNA preparation for molecular detection. doi: 10.1373/clinchem.2014.221374


Lyse cell/
oranism


1. Release 
RNA


From other 
cell material 
incl. proteins


2. Separate 
RNA


Increase the 
RNA yield


Concentrate 
(optional)


Wash away 
unwanted 
material


3. Purify 
RNA


Goal: Extract all of the RNAs of the cells without degrading the molecules.




Quality control of extracted total RNA


RIN = 28S:18S ratio




avoid degraded RNA junk

optimum: RIN = 10


Use the expertise of the 
sequencing facility staff! 

They’ve seen it all!


Figure from Griffith et al., PLoS Comp Biol (2015). doi: 10.1371/journal.pcbi.1004393


Gel electrophoresis


28S


18S




Influence of the RNA enrichment strategy


Figure from Griffith et al., PLoS Comp Biol (2015). doi: 10.1371/journal.pcbi.1004393


which transcripts are 
you interested in?




what type of noise 
can you tolerate?


ribo-
depletion


exome 
array


total 
RNA
rRNA

poly(A)


protein coding 
(strongly expressed)


protein coding 
(lowlyexpressed)


rRNA


mostly

rRNA & tRNA

< 2% mRNA!




Size selection: lllumina needs short 
fragments! (but not too short)


column-
based 

clean-up


gel-based 
size selection


Figure modified from Griffith et al., PLoS Comp Biol (2015). doi: 10.1371/journal.pcbi.1004393


very small RNAs are lost 
in standard protocols


more efficient sequencing
 see Lowe et al. (2018) for small RNA 
library prep 

(﻿doi: 10.1186/s12864-018-4726-6)



RNA-seq library preparation: pick one!


double-stranded cDNA synthesis followed by the same steps as
done for DNA-seq, i.e. end-repair, ligation of dsDNA adapters, and
PCR amplification (Fig. 2). A major drawback of this method is
that strand information is not preserved. For this reason, many
different methods have been developed for strand-specific RNA-
seq, which fall into two main classes. One class of methods relies
on marking one strand by chemical modification. These modifica-
tion methods essentially follow the standard protocol with the
exception of these marking steps. A well-known example is the
dUTP second strand marking method, in which dUTP is incorpo-
rated in the second strand, preventing this strand from being
amplified by PCR, thus leading to the exclusive amplification of
the first strand [22]. The second class relies on attaching different
adapters in a known orientation relative to the 5' and 3' ends of
the original mRNA. A major representative of this class is the
Illumina RNA ligation method, in which adapters are ligated to
the RNA in a sequential manner. Other methods of this class are

the “not so random” (NSR) method, which relies on first and
second-strand cDNA synthesis from degenerate primers tailed
with adapter sequences [23] or the SMART method, in which
reverse transcription from an adapter-tailed primer is followed by
template switching at the 5' end of the RNA template. SMART is
based on the fact that reverse transcriptases can add three non-
templated C residues to which an oligonuceotide with three
terminal G's can bind; this oligonucleotide will then serve as a
template for continued cDNA synthesis [24]. A variant is the
SMART-RNA ligation (hybrid) method, in which first strand cDNA
synthesis is preceded by 3' adapter ligation as in the RNA ligation
method.

RNA-seq protocols are technically more challenging than DNA-
seq protocols and are often biased procedures. Common types of
bias include low complexity (many reads with the same starting
point), uneven coverage across different regions of transcription
units, and antisense artifacts in the case of stranded libraries.

3’ adapter ligation

random priming 
and reverse 
transcription

second strand 
synthesis

PCR

end repair, A-
addition, adapter 
ligation

PCR

UU
U

U
U UU

reverse 
transcription

PCR

rRNA depletion/mRNA 
enrichment

fragmentation

5’ adapter ligation

end repair, A-
addition, adapter 
ligation

U U

Fig. 2 – The most common RNA-seq protocols fall in three main classes. (A) Classical Illumina protocol. Random-primed double-
stranded cDNA synthesis is followed by adapter ligation and PCR. (B) One class of strand-specific methods relies on marking one
strand by chemical modification. The dUTP second strand marking method follows basically the same procedure as the classical
protocol except that dUTP is incorporated during second strand cDNA synthesis, preventing this strand from being amplified by
PCR. Most current transcriptome library preparation kits follow the dUTP method. (C) The second class of strand-specific methods
relies on attaching different adapters in a known orientation relative to the 5' and 3'ends of the RNA transcript. The Illumina
ligation method is a well-know example of this class and is based on sequential ligation of two different adapters. Most current
small RNA library preparation kits follow the RNA ligation method.

E X P E R I M E N T A L C E L L R E S E A R C H 3 2 2 ( 2 0 1 4 ) 1 2 – 2 016

Van Dijk et al. (2014). Experimental Cell Research, 322(1), 12–20. doi:10.1016/j.yexcr.2014.01.008


sequential ligation of two 
different adapters 


dUTP stranded library 
preparation


QC!


RNA extraction 

mRNA enrichment 

cDNA synthesis 

fragmentation  
(~200 bp) 

cDNA plus sequencing 
adapters 

classical Illumina protocol

(unstranded)




Unstranded vs. stranded protocols


Fig. from Griffith et al. (2015) doi:10.1371/journal.pcbi.1004393


protocols that lose the strand information are expected to return equal 
fractions of fwd/rev reads because they originate from ds-cDNA


strand-agnostic


strand-specific




RNA-seq workflow overview


Sequencing

Total RNA extraction

RNA 

cDNA with adapters 

cells 

fragments of the 
RNAs of interest 

flowcell with 
primers


http://informatics.fas.harvard.edu/test-tutorial-page/


flowcell coated with 
universal adapter 
oligos


cDNA 
fragment 
of interest




Cluster generation

= physically separate clusters of identical clonal copies of individual fragments


single fragment 
attaches to a 

random spot on 
the flow cell via 

adapter 
hybridization


bridge amplification 
yields physically 

separate clusters of 
multiple clonal copies




Cluster generation


bridge amplification
 denaturation
 cluster generation

removal of complementary 

strands à identical fragment 
copies remain


http://informatics.fas.harvard.edu/test-tutorial-page/


= physically separate clusters of identical clonal copies of individual fragments




Sequencing by synthesis


5"

Illumina Sequencing Workflow 

1.  extend 1st base

2.  read (excite & capture 

image)

3.  de-block


repeat for 50 – 100 
cycles (= length of read)


generate base calls 
from the images


Image from Illumina documentation


labelled dNTP


primer


flowcell


original 
cDNA 

fragment

(200 bp) 

representing 
a transcript




Typical biases of Illumina sequencing

•  sequencing errors

•  miscalled bases

•  PCR artifacts (library preparation)


•  duplicates (due to low amounts of starting material)

•  length bias

•  GC bias


Figure from Love et al. (2016). Nat Biotech, 34(12). More details & refs in course notes (esp. Table 6).


RNA-seq-specific


sample-
specific 

problems!


specific for the sequencing platform/
machine




General sources of biases 
(not inherently sample-specific)


inclusion of multi-mapped reads exclusion of multi-mapped reads

•  issues with the reference 
•  CNV 
•  mappability 
 

•  inappropriate data processing 



RAW SEQUENCING READS

Let the data wrangling begin!




RNA-seq workflow overview


Sequencing

•  mRNA enrichment
•  fragmentation
•  cDNA library

Bioinformatics


•  cluster generation
•  sequencing by synthesis
•  image acquisition

Total RNA extraction
RNA 

cDNA with adapters 

cells 

fragments 



Images

Raw reads

Aligned reads

Read count table

Normalized read count table

List of fold changes & statistical values

Downstream analyses on DE genes

FASTQC 

Base calling & demultiplexing

Mapping

Counting

DE test & multiple testing correction

Normalizing

Filtering

.tif 

.fastq 

Bioinformatics workflow of RNA-seq analysis


.sam/.bam 

.txt 

.Robj 

.Robj, .txt 

Raw reads

Bustard/RTA/OLB, CASAVA 

STAR 

featureCounts 

DESeq2, edgeR 

DESeq2, edgeR, limma 

Customized scripts 



Where are all the reads?

International Nucleotide Sequence 

Database Collaboration


Sequence 
Read 

Archive GenBank
 DDBJ


ENA


http://www.ncbi.nlm.nih.gov/genbank/
 http://www.ddbj.nig.ac.jp/intro-e.html


https://www.ebi.ac.uk/ena/


The sequence read archive (SRA) is the main repository for publicly available DNA 
and RNA sequencing data of which 3 instances are maintained world-wide. 

The different mirrors 
provide different routes 

for browsing & 
downloading the data.


�Detailed information about the SRA: O’Sullivan et al. (2018) Managing Sequence Data. In 
Bioinformatics: Data, Sequence Analysis, and Evolution. doi: 10.1007/978-1-4939-6622-6_4




Public RNA-seq resources

Collection Number of 

samples/
libraries 

Reference 

TCGA 12,000 Cancer Genome Atlas Research 
Network. 2013. PMID: 24071849 

GTEX 11,000 Carither et al., 2015. PMID: 26484571 
Human Protein Atlas 8,00 Uhlen et al. 2015. PMID: 25613900 
ENCODE 2,300 David et al. 2018. PMID: 29126249 
GEUVADIS 1,100 Lappalainen et al. 2013. PMID: 

24037378 
Cancer Cell Line 
Encyclopedia 

650 Barretina et al. 2012. PMID: 22460905 

Leucegene (AML focus) 550 Lavalée et al. 2018. PMID: 29550835 

The recount resource offers processed read counts of >2,000 different studies!

https://jhubiostatistics.shinyapps.io/recount/ 



http://metasra.biostat.wisc.edu/ 



Let’s download!

• We will work with a data set submitted by Gierlinski et al.


•  2 conditions: SNF2 (knock-out), WT

•  48 biological replicates with 7 technical replicates each 


•  they deposited the sequence files with SRA – we will 
retrieve it via ENA (https://www.ebi.ac.uk/ena/)


•  accession number of the Gierlinski data: ERP004763

ls 

mkdir 

wget 

cut 

grep 

awk 

Course notes @ https://chagall.med.cornell.edu/
RNASEQcourse/ 



See Section 2 (Raw Data) for download instructions etc. 


Gierliński et al. (2015). Bioinformatics, 31(22), 3625–3630. & Schurch et al. (2016) RNA.


Excellent tutorial on speeding up the download from SRA:

https://www.biostars.org/p/325010/ 



General workflow for the data download


1.  Find the samples that belong to the study by Gierlinski 
et al. using the accession number given in the 
publication (ERP004763)

•  Figure out which sample name belongs to what type of sample. Gierlinski 

et al. provide that via a table on figshare.


2.  Extract the web links to the individual files. (cut/awk/…)

3.  Download each file. (wget or curl)


•  technical replicates of the same biological sample should be placed into 
the same folder




Downloading a batch of fastq files 

https://www.ebi.ac.uk/ena/ à study ERP004763 

 

list of links


sample info






FASTQ file format

= FASTA + quality scores


1 read ó 4 lines!


2.2 Storing sequencing reads: FASTQ format

Example data Throughout the course, we will be working with sequencing reads from the most compre-
hensive RNA-seq dataset to date that contains mRNA from 48 replicates of two S. cerevisiae populations:
wildtype and snf2 knock-out mutants (Gierlinski et al., 2015; Schurch et al., 2015). All 96 samples were
sequenced on one flowcell (Illumina HiSeq 2000); each sample was distributed over seven lanes, which means
that there are seven technical replicates per sample. The accession number for the entire data set (consisting
of 7 x 2 x 48 raw read files) is ERP004763.

? 
Use the information from the file ERP004763 sample mapping.tsv to download all FASTQ files
related to the biological replicates no. 1 of sample type “SNF2” as well as of sample type “WT”.
Try to do it via the command line and make sure to create two folders (e.g., SNF2 rep1 and
WT rep1) of which each should contain seven FASTQ files in the end.

2.2 Storing sequencing reads: FASTQ format

Currently, raw reads are most commonly stored as FASTQ files. However, details of the file formats may vary
widely depending on the sequencing platform, the lab that released the data, or the data repository. For
a more comprehensive overview of possible file formats of raw sequencing data, see the NCBI’s file format
guide: https://www.ncbi.nlm.nih.gov/books/NBK242622/.

The FASTQ file format was derived from the simple text format for nucleic acid or protein sequences, FASTA.
FASTQ bundles the sequence of every single read produced during a sequencing run together with the quality
scores. FASTQ files are uncompressed and quite large because they contain the following information for every
single sequencing read:

1. @ followed by the read ID and possibly information about the sequencing run

2. sequenced bases

3. + (perhaps followed by the read ID again, or some other description)

4. quality scores for each base of the sequence (ASCII-encoded, see below)

Again: be aware that this is not a strictly defined file format – variations do exist and may cause havoc!

Here’s a real-life example snippet of a FASTQ file downloaded from ENA:⌥ ⌅
1 $ zcat ERR459145.fastq.gz | head
2 @ERR459145 .1 DHKW5DQ1 :219: D0PT7ACXX :2:1101:1590:2149/1
3 GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGATCGGAAGAGCGGTTCAGC
4 +
5 @7 <DBADDDBH?DHHI@DH >HHHEGHIIIGGIFFGIBFAAGAFHA ’5?B@D
6 @ERR459145 .2 DHKW5DQ1 :219: D0PT7ACXX :2:1101:2652:2237/1
7 GCAGCATCGGCCTTTTGCTTCTCTTTGAAGGCAATGTCTTCAGGATCTAAG
8 +
9 @@;BDDEFGHHHHIIIGBHHEHCCHGCGIGGHIGHGIGIIGHIIAHIIIGI

10 @ERR459145 .3 DHKW5DQ1 :219: D0PT7ACXX :2:1101:3245:2163/1
11 TGCATCTGCATGATCTCAACCATGTCTAAATCCAAATTGTCAGCCTGCGCG⌃ ⇧

! 
For paired-end (PE) sequencing runs, there will always be two FASTQ files – one for the forward
reads, one for the backward reads.
Once you have downloaded the files for a PE run, make sure you understand how the origin of
each read (forward or reverse read) is encoded in the read name information as some downstream
analysis tools may require you to combine the two files into one.

? 
1. Count the number of reads stored in a FASTQ file.

2. Extract just the quality scores of the first 10 reads of a FASTQ file.

3. Concatenate the two FASTQ files of a PE run.
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1
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3

4


1.  @Read ID and sequencing run information

2.  sequence

3.  + (additional description possible)

4.  quality scores




Base quality score: summarizing numerical 
values into single-character representations
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guide: https://www.ncbi.nlm.nih.gov/books/NBK242622/.

The FASTQ file format was derived from the simple text format for nucleic acid or protein sequences, FASTA.
FASTQ bundles the sequence of every single read produced during a sequencing run together with the quality
scores. FASTQ files are uncompressed and quite large because they contain the following information for every
single sequencing read:

1. @ followed by the read ID and possibly information about the sequencing run

2. sequenced bases

3. + (perhaps followed by the read ID again, or some other description)
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Again: be aware that this is not a strictly defined file format – variations do exist and may cause havoc!
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11 TGCATCTGCATGATCTCAACCATGTCTAAATCCAAATTGTCAGCCTGCGCG⌃ ⇧

! 
For paired-end (PE) sequencing runs, there will always be two FASTQ files – one for the forward
reads, one for the backward reads.
Once you have downloaded the files for a PE run, make sure you understand how the origin of
each read (forward or reverse read) is encoded in the read name information as some downstream
analysis tools may require you to combine the two files into one.

? 
1. Count the number of reads stored in a FASTQ file.

2. Extract just the quality scores of the first 10 reads of a FASTQ file.

3. Concatenate the two FASTQ files of a PE run.
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base call error 
probability p, 

e.g. 10e-4 

Phred 

score,

e.g.: 40 -10 x log10(p)

“FASTQ 
score”,

e.g.: I turn score into 

ASCII symbol 


Illumina’s CASAVA pipeline:

Base calls are immediately recorded (based on the images of the fluorescent signals) 

together with an error probability (BCL files).




These error probability values are translated into ASCII symbols in the FASTQ files.




ASCII symbols


http://www.ascii-code.com/


ASCII encodes 128 
specified characters into 

integers.




The first 33 characters 
represent unprintable 

control codes (e.g. “Start of 
text”), which is why Phred 

scores were originally 
encoded with an offset of 

+33.




Base quality scores


Indicator.[6] The Illumina manual[7] (page 30) states the following: If a read ends with
a segment of mostly low quality (Q15 or below), then all of the quality values in the
segment are replaced with a value of 2 (encoded as the letter B in Illumina's
text-based encoding of quality scores)... This Q2 indicator does not predict a specific
error rate, but rather indicates that a specific final portion of the read should not be
used in further analyses. Also, the quality score encoded as "B" letter may occur
internally within reads at least as late as pipeline version 1.6, as shown in the
following example:

@HWI-EAS209_0006_FC706VJ:5:58:5894:21141#ATCACG/1
TTAATTGGTAAATAAATCTCCTAATAGCTTAGATNTTACCTTNNNNNNNNNNTAGTTTCTTGAGATTTGTTGGGGGAGACATTTTTGTGATTGCCTTGAT
+HWI-EAS209_0006_FC706VJ:5:58:5894:21141#ATCACG/1
efcfffffcfeefffcffffffddf`feed]`]_Ba_^__[YBBBBBBBBBBRTT\]][]dddd`ddd^dddadd^BBBBBBBBBBBBBBBBBBBBBBBB

An alternative interpretation of this ASCII encoding has been proposed.[8] Also, in Illumina
runs using PhiX controls, the character 'B' was observed to represent an "unknown quality
score". The error rate of 'B' reads was roughly 3 phred scores lower the mean observed
score of a given run.

Starting in Illumina 1.8, the quality scores have basically returned to the use of the
Sanger format (Phred+33).

For raw reads, the range of scores will depend on the technology and the base caller used,
but will typically be up to 41 for recent Illumina chemistry. Since the maximum observed
quality score was previously only 40, various scripts and tools break when they encounter
data with quality values larger than 40. For processed reads, scores may be even higher.
For example, quality values of 45 are observed in reads from Illumina's Long Read
Sequencing Service (previously Moleculo).

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS.....................................................
  ..........................XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX......................
  ...............................IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII......................
  .................................JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ......................
LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL....................................................

  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
  |                         |    |        |                              |                     |
 33                        59   64       73                            104                   126
  0........................26...31.......40                                
                           -5....0........9.............................40 
                                 0........9.............................40 
                                    3.....9.............................40 
  0.2......................26...31........41                              

S - Sanger        Phred+33,  raw reads typically (0, 40)
X - Solexa        Solexa+64, raw reads typically (-5, 40)
I - Illumina 1.3+ Phred+64,  raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64,  raw reads typically (3, 40)
     with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold) 
     (Note: See discussion above).
L - Illumina 1.8+ Phred+33,  raw reads typically (0, 41)

Color space

For SOLiD data, the sequence is in color space, except the first position. The quality values
are those of the Sanger format. Alignment tools differ in their preferred version of the
quality values: some include a quality score (set to 0, i.e. '!') for the leading nucleotide,
others do not. The sequence read archive includes this quality score.

FASTQ format - Wikipedia, the free encyclopedia

5 of 8

also see Table 2 in the course notes
 image from https://en.wikipedia.org/wiki/FASTQ_format


•  each base has a certain error probability (p)

•  Phred score = -10 x log10(p)
•  Phred scores are ASCII-encoded, e.g., “!” COULD represent Phred score 33


Phred


+ 33




Quality control of raw reads: FastQC

http://www.bioinformatics.babraham.ac.uk/projects/fastqc 

FastQC aims to provide a simple way to do some quality control checks on 
raw sequence data coming from high throughput sequencing pipelines.

It provides a modular set of analyses which you can use to give a quick 
impression of whether your data has any problems of which you should be 
aware before doing any further analysis.



The main functions of FastQC are:



•      Import of data from BAM, SAM or FastQ files (any variant)

•      Providing a quick overview to tell you in which areas there may be 

problems

•      Summary graphs and tables to quickly assess your data

•      Export of results to an HTML based permanent report

•      Offline operation to allow automated generation of reports without 

running the interactive application


$ ~/mat/software/FastQC/fastqc 

$ ~/mat/software/anaconda2/bin/multiqc 

not specific for 
RNA-seq data!



